SR and SZ algorithms for the symplectic (butterfly) eigenproblem

被引:10
作者
Benner, P
Fassbender, H [1 ]
Watkins, DS
机构
[1] Univ Bremen, Zentrum TEchnomathemat, Fachbereich Math & Informat 3, D-28357 Bremen, Germany
[2] Washington State Univ, Dept Pure & Appl Math, Pullman, WA 99164 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0024-3795(98)10090-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
SR and SZ algorithms for the symplectic (generalized) eigenproblem that are based on the reduction of a symplectic matrix to symplectic butterfly form are discussed. A 2n x 2n symplectic butterfly matrix has 8n - 4 (generically) nonzero entries, which are determined by 4n - 1 parameters. While the SR algorithm operates directly on the matrix entries, the SZ algorithm works with the 4n - 1 parameters. The algorithms are made more compact and efficient by using Laurent polynomials, instead of standard polynomials, to drive the iterations. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:41 / 76
页数:36
相关论文
共 32 条
[1]  
Anderson E, 1994, LAPACK USERS GUIDE
[2]  
Banse G, 1996, Z ANGEW MATH MECH, V76, P375
[3]  
BANSE G, 1994, SYSTEMS NETWORKS MAT, P613
[4]  
BANSE G, 1995, THESIS U BREMEN BREM
[5]  
BANSE G, 1995, Z ANGEW MATH MECH S2, V75, P615
[6]  
Benner P, 1998, LINEAR ALGEBRA APPL, V276, P19
[7]  
BENNER P, 1998, IMPLICITLY RESTARTED
[8]  
Benner P., 1995, 9523 SPC TU CHEMN ZW
[9]   Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions [J].
Bohner, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (03) :804-826