3D sandwiched nanosheet of MoS2/C@RGO achieved by supramolecular self-assembly method as high performance material in supercapacitor

被引:44
作者
Liu, Qian [1 ]
Gao, Aimei [1 ]
Huang, Yulan [1 ]
Yi, Fenyun [1 ]
Cheng, Honghong [1 ]
Zhao, Shixu [1 ]
Chen, Hongyu [1 ]
Zeng, Ronghua [1 ]
Sun, Ziqi [2 ]
Shu, Dong [1 ,3 ,4 ]
Song, Xiaona [1 ]
机构
[1] South China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China
[2] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4000, Australia
[3] Minist Educ, Engn Res Ctr Mat & Technol Elect Energy Storage, Guangzhou, Guangdong, Peoples R China
[4] Guangzhou Key Lab Mat Energy Convers & Storage, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
MoS2/C@RGO; Nanosheets; Supercapacitor; Supramolecular; Self-assembly; MOS2/REDUCED GRAPHENE OXIDE; FACILE SYNTHESIS; MOS2; NANOSHEETS; NI FOAM; ELECTRODE; COMPOSITES; NANOCOMPOSITES; ADSORPTION; BEHAVIOR; AEROGEL;
D O I
10.1016/j.jallcom.2018.11.108
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new type of sandwiched nanosheets 3D MoS2/C@RGO is synthesized by supramolecular self-assembly methods, as a novel and excellence electrode material. The surface characterization techniques show that the sandwiched 3D MoS2/C@RGO possesses rich porosity and large specific area, which is convenient for electrolyte ion transportation and beneficial for the improved electrical conductivity. An outstanding specific capacitance of the prepared MoS2/C@RGO of 340.0 F/g at 1 A g(-1) is achieved with an excellent cycle stability of 90% after 1000 cycles at the scanning rate of 40 mV/s. The sandwiched 3D MoS2/C@RGO is suggested to be an ideal candidate for supercapacitors. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1176 / 1183
页数:8
相关论文
共 45 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/nnano.2015.40, 10.1038/NNANO.2015.40]
[2]   Freeze-dried MoS2 sponge electrodes for enhanced electrochemical energy storage [J].
Balasingam, Suresh Kannan ;
Lee, Minoh ;
Kim, Byung Hoon ;
Lee, Jae Sung ;
Jun, Yongseok .
DALTON TRANSACTIONS, 2017, 46 (07) :2122-2128
[3]   Layer-structured nanohybrid MoS2@rGO on 3D nickel foam for high performance energy storage applications [J].
Bulakhe, Ravindra N. ;
Van Hoa Nguyen ;
Shim, Jae-Jin .
NEW JOURNAL OF CHEMISTRY, 2017, 41 (04) :1473-1482
[4]   Preparation of MoS2-Coated Three-Dimensional Graphene Networks for High-Performance Anode Material in Lithium-Ion Batteries [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Rui, Xianhong ;
Yan, Qingyu ;
Kong, Jing ;
Zhang, Hua .
SMALL, 2013, 9 (20) :3433-3438
[5]   Integrated description of electrode/electrolyte interfaces based on equivalent circuits and its verification using impedance measurements [J].
Chang, BY ;
Park, SM .
ANALYTICAL CHEMISTRY, 2006, 78 (04) :1052-1060
[6]   Smart combination of three-dimensional-flower-like MoS2 nanospheres/interconnected carbon nanotubes for application in supercapacitor with enhanced electrochemical performance [J].
Chen, Ming ;
Dai, Yu ;
Wang, Jingjing ;
Wang, Qiong ;
Wang, Yaping ;
Cheng, Xiaonong ;
Yan, Xuehua .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 696 :900-906
[7]   The supercapacitive behavior and excellent cycle stability of graphene/MnO2 composite prepared by an electrostatic self-assembly process [J].
Cheng, Honghong ;
Long, Lu ;
Shu, Dong ;
Wu, Jinqing ;
Gong, Yibin ;
He, Chun ;
Kang, Zongxuan ;
Zou, Xianping .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (28) :16151-16161
[8]  
Conway B, 1999, ELECTROCHEMICAL SUPE
[9]   Two-Dimensional Water-Coupled Metallic MoS2 with Nanochannels for Ultrafast Supercapacitors [J].
Geng, Xiumei ;
Zhang, Yelong ;
Han, Yang ;
Li, Jingxiao ;
Yang, Lei ;
Benamara, Mourad ;
Chen, Liao ;
Zhu, Hongli .
NANO LETTERS, 2017, 17 (03) :1825-1832
[10]   Mixed 1T-2H Phase MoS2/Reduced Graphene Oxide as Active Electrode for Enhanced Supercapacitive Performance [J].
Gigot, Arnaud ;
Fontana, Marco ;
Serrapede, Mara ;
Castellino, Micaela ;
Bianco, Stefano ;
Armandi, Marco ;
Bonelli, Barbara ;
Pirri, Candido Fabrizio ;
Tresso, Elena ;
Rivolo, Paola .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (48) :32842-32852