Combined Calcium Looping and Chemical Looping Combustion for Post-Combustion Carbon Dioxide Capture: Process Simulation and Sensitivity Analysis

被引:30
作者
Duhoux, Benoit [1 ]
Mehrani, Poupak [1 ]
Lu, Dennis Y. [2 ]
Symonds, Robert T. [2 ]
Anthony, Edward J. [3 ]
Macchi, Arturo [1 ]
机构
[1] Univ Ottawa, Dept Chem & Biol Engn, 161 Louis Pasteur St, Ottawa, ON K1N 6N5, Canada
[2] CanmetENERGY, Nat Resources Canada, 1 Haanel Dr, Ottawa, ON K1A 1M1, Canada
[3] Cranfield Univ, Sch Appl Sci, Cranfield MK43 0AL, Beds, England
基金
英国工程与自然科学研究理事会;
关键词
calcium; carbon storage; chemical looping; combustion; process simulation; CAO-BASED SORBENT; SITU CO2 CAPTURE; CARBONATION/CALCINATION CYCLE; OXYGEN CARRIERS; NATURAL-GAS; PILOT-SCALE; POWER-PLANT; FLUE-GAS; CALCINATION; HYDROGEN;
D O I
10.1002/ente.201600024
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, a combined calcium looping and chemical looping combustion (CaL-CLC) technology is simulated at thermodynamic equilibrium conditions and the results in terms of efficiency, power production, and solids circulation rates are compared with the case of using CaL alone. In addition, a new solids looping configuration in the CaL-CLC process is proposed with the purpose of mitigating the loss of calcium oxide conversion after high cycle numbers. Simulations show an improved process efficiency of the CaL-CLC method compared with CaL alone (34.2 vs. 31.2% higher heat value) and an increased power output (136 vs. 110MW(e) additional power) due to the higher energy requirement to preheat the reactants. A sensitivity analysis of the process operating parameters highlights the particular importance of the temperature difference between reactors, which has a strong impact on the required mass of solids circulating in the loops. Finally, partial carbon dioxide capture scenarios are considered and indicate that lower capture levels are suitable to match regulation targets.
引用
收藏
页码:1158 / 1170
页数:13
相关论文
共 46 条
[1]   New CO2 Capture Process for Hydrogen Production Combining Ca and Cu Chemical Loops [J].
Abanades, J. C. ;
Murillo, R. ;
Fernandez, J. R. ;
Grasa, G. ;
Martinez, I. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (17) :6901-6904
[2]  
Abanades J.C., 2009, Patent No. [EP2305366 A1, 2305366, EP 2305366 A1]
[3]   The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3 [J].
Abanades, JC .
CHEMICAL ENGINEERING JOURNAL, 2002, 90 (03) :303-306
[4]   Progress in Chemical-Looping Combustion and Reforming technologies [J].
Adanez, Juan ;
Abad, Alberto ;
Garcia-Labiano, Francisco ;
Gayan, Pilar ;
de Diego, Luis F. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2012, 38 (02) :215-282
[5]   Modelling of a fluidized bed carbonator reactor to capture CO2 from a combustion flue gas [J].
Alonso, M. ;
Rodriguez, N. ;
Grasa, G. ;
Abanades, J. C. .
CHEMICAL ENGINEERING SCIENCE, 2009, 64 (05) :883-891
[6]  
[Anonymous], 2015, Key world energy statistics
[7]  
[Anonymous], 2015, CO2 Emissions from Fuel Combustion Highlights, V2015
[8]   Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot [J].
Arias, B. ;
Diego, M. E. ;
Abanades, J. C. ;
Lorenzo, M. ;
Diaz, L. ;
Martinez, D. ;
Alvarez, J. ;
Sanchez-Biezma, A. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 18 :237-245
[9]   The calcium looping cycle for large-scale CO2 capture [J].
Blamey, J. ;
Anthony, E. J. ;
Wang, J. ;
Fennell, P. S. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2010, 36 (02) :260-279
[10]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189