Regularity of solutions to the Dirichlet problem for degenerate elliptic equation

被引:7
作者
Chen, YM [1 ]
机构
[1] Peking Univ, Sch Math, Beijing 100871, Peoples R China
关键词
regularity; Dirichlet problem; degenerate; weighted spaces;
D O I
10.1142/S0252959903000530
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the author studies the regularity of solutions to the Dirichlet problem for equation Lu = f, where L is a second order degenerate elliptic operator in divergence form in Omega, a bounded open subset of R-n (n > 3).
引用
收藏
页码:529 / 540
页数:12
相关论文
共 16 条
[1]   Harnack inequalities for fuchsian type weighted elliptic equations [J].
De Cicco, V ;
Vivaldi, MA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (9-10) :1321-1347
[2]   POISSON EQUATIONS AND MORREY SPACES [J].
DIFAZIO, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 163 (01) :157-167
[3]   DIRICHLET PROBLEM CHARACTERIZATION OF REGULARITY [J].
DIFAZIO, G .
MANUSCRIPTA MATHEMATICA, 1994, 84 (01) :47-56
[4]   THE WIENER TEST FOR DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, E ;
JERISON, D ;
KENIG, C .
ANNALES DE L INSTITUT FOURIER, 1982, 32 (03) :151-182
[5]  
Fabes E. B., 1983, WADSWORTH MATH SER, V1, P577
[6]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[7]  
Garcia Cuerva J., 1985, WEIGHTED NORM INEQUA
[8]   HARNACK INEQUALITY FOR DEGENERATE SCHRODINGER-OPERATORS [J].
GUTIERREZ, CE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 312 (01) :403-419
[9]  
KRUZKOV SN, 1963, SOV MATH, V4, P686
[10]  
LITTMAN W, 1963, ANN SCUOLA NORM SUP, V0017, P00045