Tuning Optimization Algorithms Under Multiple Objective Function Evaluation Budgets

被引:19
作者
Dymond, Antoine S. [1 ]
Engelbrecht, Andries P. [2 ]
Kok, Schalk [1 ]
Heyns, P. Stephan [1 ]
机构
[1] Univ Pretoria, Dept Mech & Aeronaut Engn, ZA-0043 Pretoria, South Africa
[2] Univ Pretoria, Dept Comp Sci, ZA-0043 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
Control parameter tuning; multiobjective optimization; objective function evaluation (OFE) budget; EVOLUTIONARY ALGORITHMS; DIFFERENTIAL EVOLUTION; PARTICLE SWARM;
D O I
10.1109/TEVC.2014.2322883
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most sensitivity analysis studies of optimization algorithm control parameters are restricted to a single objective function evaluation (OFE) budget. This restriction is problematic because the optimality of control parameter values (CPVs) is dependent not only on the problem's fitness landscape, but also on the OFE budget available to explore that landscape. Therefore, the OFE budget needs to be taken into consideration when performing control parameter tuning. This paper presents a new algorithm tuning multiobjective particle swarm optimization (tMOPSO) for tuning the CPVs of stochastic optimization algorithms under a range of OFE budget constraints. Specifically, for a given problem tMOPSO aims to determine multiple groups of CPVs, each of which results in optimal performance at a different OFE budget. To achieve this, the control parameter tuning problem is formulated as a multiobjective optimization problem. Additionally, tMOPSO uses a noise-handling strategy and CPV assessment procedure, which are specialized for tuning stochastic optimization algorithms. Conducted numerical experiments provide evidence that tMOPSO is effective at tuning under multiple OFE budget constraints.
引用
收藏
页码:341 / 358
页数:18
相关论文
共 46 条
[1]  
[Anonymous], 2011, IRACE PACKAGE ITERAT
[2]  
Auger A, 2005, IEEE C EVOL COMPUTAT, P1777
[3]  
Balaprakash P, 2007, LECT NOTES COMPUT SC, V4771, P108
[4]  
Bartz-Beielstein T., 2004, Applied Numerical Analysis and Computational Mathematics, V1, P413, DOI 10.1002/anac.200410007
[5]  
Bartz-Beielstein T, 2005, IEEE C EVOL COMPUTAT, P773
[6]  
Berry A., 2006, Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, P626
[7]   Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice [J].
Beyer, HG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 186 (2-4) :239-267
[8]  
Birattari M., 2002, P 4 ANN C GENETIC EV, P11
[9]   Meta-Optimization for Parameter Tuning with a Flexible Computing Budget [J].
Branke, Juergen ;
Elomari, Jawad .
PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2012, :1245-1252
[10]   Localization for Solving Noisy Multi-Objective Optimization Problems [J].
Bui, Lam T. ;
Abbass, Hussein A. ;
Essam, Daryl .
EVOLUTIONARY COMPUTATION, 2009, 17 (03) :379-409