Bayesian Markov Chain Monte Carlo inversion of surface-based transient electromagnetic data

被引:3
作者
Deng, Shengqiang [1 ]
Zhang, Nuoya [2 ,3 ]
Kuang, Bo [1 ]
Li, Yaohua [1 ]
Sun, Huaifeng [2 ,3 ,4 ]
机构
[1] Guangxi Commun Design Grp Co Ltd, Nanning, Peoples R China
[2] Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
[3] Shandong Univ, Lab Earth Electromagnet Explorat, Jinan, Peoples R China
[4] Shandong Res Inst Ind Technol, Adv Explorat & Transparent City Innovat Ctr, Jinan, Peoples R China
来源
SN APPLIED SCIENCES | 2022年 / 4卷 / 10期
基金
中国国家自然科学基金;
关键词
LEAST-SQUARES INVERSION; EM DATA; ALGORITHM; MODELS;
D O I
10.1007/s42452-022-05134-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional linearized deterministic inversions of transient electromagnetic (TEM) data inherently simplify the non-uniqueness and ill-posed nature of the problem. While Monte-Carlo-type approaches allow for a comprehensive search of the solution space, gaining the ensemble of inferred solutions as comprehensive as possible may be limited utility in high-dimensional problems. To overcome these limitations, we utilize a Markov Chain Monte Carlo (MCMC) inversion approach for surface-based TEM data, which incorporates Bayesian concepts into Monte-Carlo-type global search strategies and can infer the posterior distribution of the models satisfying the observed data. The proposed methodology is first tested on synthetic data for a range of canonical earth models and then applied to a pertinent field dataset. The results are consistent with those obtained by standard linearized inversion approaches, but, as opposed to the latter, allow us to estimate the associated non-linear, non-Gaussian uncertainty.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: recent advances and comparative study [J].
Jin, Seung-Seop ;
Ju, Heekun ;
Jung, Hyung-Jo .
STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2019, 15 (11) :1548-1565
[42]   Full-Waveform Inversion of Time-Lapse Crosshole GPR Data Using Markov Chain Monte Carlo Method [J].
Wang, Shengchao ;
Han, Liguo ;
Gong, Xiangbo ;
Zhang, Shaoyue ;
Huang, Xingguo ;
Zhang, Pan .
REMOTE SENSING, 2021, 13 (22)
[43]   Markov Chain Monte Carlo Methods for Fluid Flow Forecasting in the Subsurface [J].
Ali, Alsadig ;
Al-Mamun, Abdullah ;
Pereira, Felipe ;
Rahunanthan, Arunasalam .
COMPUTATIONAL SCIENCE - ICCS 2020, PT VII, 2020, 12143 :757-771
[44]   Markov chain Monte Carlo test of toric homogeneous Markov chains [J].
Takemura, Akimichi ;
Hara, Hisayuki .
STATISTICAL METHODOLOGY, 2012, 9 (03) :392-406
[45]   Reversible jump Markov chain Monte Carlo for deconvolution [J].
Kang, Dongwoo ;
Verotta, Davide .
JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2007, 34 (03) :263-287
[46]   Markov Chain Monte Carlo and Numerical Differential Equations [J].
Sanz-Serna, J. M. .
CURRENT CHALLENGES IN STABILITY ISSUES FOR NUMERICAL DIFFERENTIAL EQUATIONS, CETRARO, ITALY 2011, 2014, 2082 :39-88
[47]   Markov Chain Monte Carlo for Exact Inference for Diffusions [J].
Sermaidis, Giorgos ;
Papaspiliopoulos, Omiros ;
Roberts, Gareth O. ;
Beskos, Alexandros ;
Fearnhead, Paul .
SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) :294-321
[48]   Ensemble Markov Chain Monte Carlo with Teleporting Walkers [J].
Lindsey, Michael ;
Weare, Jonathan ;
Zhang, Anna .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (03) :860-885
[49]   Unbiased Markov chain Monte Carlo methods with couplings [J].
Jacob, Pierre E. ;
O'Leary, John ;
Atchade, Yves F. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (03) :543-600
[50]   Geometric allocation approaches in Markov chain Monte Carlo [J].
Todo, S. ;
Suwa, H. .
ELC INTERNATIONAL MEETING ON INFERENCE, COMPUTATION, AND SPIN GLASSES (ICSG2013), 2013, 473