Bayesian Markov Chain Monte Carlo inversion of surface-based transient electromagnetic data

被引:3
作者
Deng, Shengqiang [1 ]
Zhang, Nuoya [2 ,3 ]
Kuang, Bo [1 ]
Li, Yaohua [1 ]
Sun, Huaifeng [2 ,3 ,4 ]
机构
[1] Guangxi Commun Design Grp Co Ltd, Nanning, Peoples R China
[2] Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
[3] Shandong Univ, Lab Earth Electromagnet Explorat, Jinan, Peoples R China
[4] Shandong Res Inst Ind Technol, Adv Explorat & Transparent City Innovat Ctr, Jinan, Peoples R China
来源
SN APPLIED SCIENCES | 2022年 / 4卷 / 10期
基金
中国国家自然科学基金;
关键词
LEAST-SQUARES INVERSION; EM DATA; ALGORITHM; MODELS;
D O I
10.1007/s42452-022-05134-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional linearized deterministic inversions of transient electromagnetic (TEM) data inherently simplify the non-uniqueness and ill-posed nature of the problem. While Monte-Carlo-type approaches allow for a comprehensive search of the solution space, gaining the ensemble of inferred solutions as comprehensive as possible may be limited utility in high-dimensional problems. To overcome these limitations, we utilize a Markov Chain Monte Carlo (MCMC) inversion approach for surface-based TEM data, which incorporates Bayesian concepts into Monte-Carlo-type global search strategies and can infer the posterior distribution of the models satisfying the observed data. The proposed methodology is first tested on synthetic data for a range of canonical earth models and then applied to a pertinent field dataset. The results are consistent with those obtained by standard linearized inversion approaches, but, as opposed to the latter, allow us to estimate the associated non-linear, non-Gaussian uncertainty.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Accelerated Bayesian Inversion of Transient Electromagnetic Data Using MCMC Subposteriors [J].
Li, Hai ;
Xue, Guoqiang ;
Zhang, Linbo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12) :10000-10010
[32]   Bayesian operational modal analysis and Markov chain Monte Carlo-based model updating of a factory building [J].
Lam, Heung-Fai ;
Hu, Jun ;
Yang, Jia-Hua .
ENGINEERING STRUCTURES, 2017, 132 :314-336
[33]   Geometry and Dynamics for Markov Chain Monte Carlo [J].
Barp, Alessandro ;
Briol, Francois-Xavier ;
Kennedy, Anthony D. ;
Girolami, Mark .
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 5, 2018, 5 :451-471
[34]   MCMCpack: Markov Chain Monte Carlo in R [J].
Martin, Andrew D. ;
Quinn, Kevin M. ;
Park, Jong Hee .
JOURNAL OF STATISTICAL SOFTWARE, 2011, 42 (09) :1-21
[35]   MARGINAL MARKOV CHAIN MONTE CARLO METHODS [J].
van Dyk, David A. .
STATISTICA SINICA, 2010, 20 (04) :1423-1454
[36]   Markov Chain Monte Carlo: an introduction for epidemiologists [J].
Hamra, Ghassan ;
MacLehose, Richard ;
Richardson, David .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2013, 42 (02) :627-634
[37]   Particle Markov chain Monte Carlo methods [J].
Andrieu, Christophe ;
Doucet, Arnaud ;
Holenstein, Roman .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :269-342
[38]   Layered nested Markov chain Monte Carlo [J].
Jackson, Nicholas E. ;
Webb, Michael A. ;
de Pablo, Juan J. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (07)
[39]   Dynamic Markov Chain Monte Carlo-Based Spectrum Sensing [J].
Wang, Zheng ;
Liu, Ling ;
Li, Kezhi .
IEEE SIGNAL PROCESSING LETTERS, 2020, 27 :1380-1384
[40]   MULTILEVEL MARKOV CHAIN MONTE CARLO FOR BAYESIAN INVERSE PROBLEM FOR NAVIER-STOKES EQUATION [J].
Yang, Juntao ;
Hoang, Viet Ha .
INVERSE PROBLEMS AND IMAGING, 2023, 17 (01) :106-135