Bayesian Markov Chain Monte Carlo inversion of surface-based transient electromagnetic data

被引:3
作者
Deng, Shengqiang [1 ]
Zhang, Nuoya [2 ,3 ]
Kuang, Bo [1 ]
Li, Yaohua [1 ]
Sun, Huaifeng [2 ,3 ,4 ]
机构
[1] Guangxi Commun Design Grp Co Ltd, Nanning, Peoples R China
[2] Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
[3] Shandong Univ, Lab Earth Electromagnet Explorat, Jinan, Peoples R China
[4] Shandong Res Inst Ind Technol, Adv Explorat & Transparent City Innovat Ctr, Jinan, Peoples R China
来源
SN APPLIED SCIENCES | 2022年 / 4卷 / 10期
基金
中国国家自然科学基金;
关键词
LEAST-SQUARES INVERSION; EM DATA; ALGORITHM; MODELS;
D O I
10.1007/s42452-022-05134-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional linearized deterministic inversions of transient electromagnetic (TEM) data inherently simplify the non-uniqueness and ill-posed nature of the problem. While Monte-Carlo-type approaches allow for a comprehensive search of the solution space, gaining the ensemble of inferred solutions as comprehensive as possible may be limited utility in high-dimensional problems. To overcome these limitations, we utilize a Markov Chain Monte Carlo (MCMC) inversion approach for surface-based TEM data, which incorporates Bayesian concepts into Monte-Carlo-type global search strategies and can infer the posterior distribution of the models satisfying the observed data. The proposed methodology is first tested on synthetic data for a range of canonical earth models and then applied to a pertinent field dataset. The results are consistent with those obtained by standard linearized inversion approaches, but, as opposed to the latter, allow us to estimate the associated non-linear, non-Gaussian uncertainty.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Bayesian identification of a cracked plate using a population-based Markov Chain Monte Carlo method [J].
Nichols, J. M. ;
Moore, E. Z. ;
Murphy, K. D. .
COMPUTERS & STRUCTURES, 2011, 89 (13-14) :1323-1332
[22]   Markov chain Monte Carlo-based Bayesian method for structural model updating and damage detection [J].
Lam, Heung-Fai ;
Yang, Jia-Hua ;
Au, Siu-Kui .
STRUCTURAL CONTROL & HEALTH MONITORING, 2018, 25 (04)
[23]   A time-domain multisource Bayesian/Markov chain Monte Carlo formulation of time-lapse seismic waveform inversion [J].
Fu, Xin ;
Innanen, Kristopher A. .
GEOPHYSICS, 2022, 87 (04) :R349-R361
[24]   Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method [J].
Zhu, Dehan ;
Gibson, Richard .
GEOPHYSICS, 2018, 83 (04) :R321-R334
[25]   A Markov chain Monte Carlo-based Bayesian framework for system identification and uncertainty estimation of full-scale structures [J].
Liu, Zeng-Yu ;
Yang, Jia-Hua ;
Lam, Heung-Fai ;
Peng, Lin-Xin .
ENGINEERING STRUCTURES, 2023, 295
[26]   Approximate Bayesian Computation using Markov Chain Monte Carlo simulation: DREAM(ABC) [J].
Sadegh, Mojtaba ;
Vrugt, Jasper A. .
WATER RESOURCES RESEARCH, 2014, 50 (08) :6767-6787
[27]   Bayesian history matching using artificial neural network and Markov Chain Monte Carlo [J].
Maschio, Celio ;
Schiozer, Denis Jose .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2014, 123 :62-71
[28]   An Efficient Markov Chain Monte Carlo Method for Bayesian System Identification of Tower Structures [J].
Yang, Jia-Hua ;
Lam, Heung-Fai .
PROCEEDINGS OF THE 25TH AUSTRALASIAN CONFERENCE ON MECHANICS OF STRUCTURES AND MATERIALS (ACMSM25), 2020, 37 :975-983
[29]   Bayesian backcalculation of pavement properties using parallel transitional Markov chain Monte Carlo [J].
Coletti, Keaton ;
Romeo, Ryan C. ;
Davis, R. Benjamin .
COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, 39 (13) :1911-1927
[30]   Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions [J].
Shen, Yuan ;
Cornford, Dan ;
Opper, Manfred ;
Archambeau, Cedric .
COMPUTATIONAL STATISTICS, 2012, 27 (01) :149-176