Bayesian Markov Chain Monte Carlo inversion of surface-based transient electromagnetic data

被引:2
作者
Deng, Shengqiang [1 ]
Zhang, Nuoya [2 ,3 ]
Kuang, Bo [1 ]
Li, Yaohua [1 ]
Sun, Huaifeng [2 ,3 ,4 ]
机构
[1] Guangxi Commun Design Grp Co Ltd, Nanning, Peoples R China
[2] Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
[3] Shandong Univ, Lab Earth Electromagnet Explorat, Jinan, Peoples R China
[4] Shandong Res Inst Ind Technol, Adv Explorat & Transparent City Innovat Ctr, Jinan, Peoples R China
来源
SN APPLIED SCIENCES | 2022年 / 4卷 / 10期
基金
中国国家自然科学基金;
关键词
LEAST-SQUARES INVERSION; EM DATA; ALGORITHM; MODELS;
D O I
10.1007/s42452-022-05134-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional linearized deterministic inversions of transient electromagnetic (TEM) data inherently simplify the non-uniqueness and ill-posed nature of the problem. While Monte-Carlo-type approaches allow for a comprehensive search of the solution space, gaining the ensemble of inferred solutions as comprehensive as possible may be limited utility in high-dimensional problems. To overcome these limitations, we utilize a Markov Chain Monte Carlo (MCMC) inversion approach for surface-based TEM data, which incorporates Bayesian concepts into Monte-Carlo-type global search strategies and can infer the posterior distribution of the models satisfying the observed data. The proposed methodology is first tested on synthetic data for a range of canonical earth models and then applied to a pertinent field dataset. The results are consistent with those obtained by standard linearized inversion approaches, but, as opposed to the latter, allow us to estimate the associated non-linear, non-Gaussian uncertainty.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Bayesian identification of a cracked plate using a population-based Markov Chain Monte Carlo method
    Nichols, J. M.
    Moore, E. Z.
    Murphy, K. D.
    COMPUTERS & STRUCTURES, 2011, 89 (13-14) : 1323 - 1332
  • [22] A time-domain multisource Bayesian/Markov chain Monte Carlo formulation of time-lapse seismic waveform inversion
    Fu, Xin
    Innanen, Kristopher A.
    GEOPHYSICS, 2022, 87 (04) : R349 - R361
  • [23] Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method
    Zhu, Dehan
    Gibson, Richard
    GEOPHYSICS, 2018, 83 (04) : R321 - R334
  • [24] A Markov chain Monte Carlo-based Bayesian framework for system identification and uncertainty estimation of full-scale structures
    Liu, Zeng-Yu
    Yang, Jia-Hua
    Lam, Heung-Fai
    Peng, Lin-Xin
    ENGINEERING STRUCTURES, 2023, 295
  • [25] Approximate Bayesian Computation using Markov Chain Monte Carlo simulation: DREAM(ABC)
    Sadegh, Mojtaba
    Vrugt, Jasper A.
    WATER RESOURCES RESEARCH, 2014, 50 (08) : 6767 - 6787
  • [26] Bayesian history matching using artificial neural network and Markov Chain Monte Carlo
    Maschio, Celio
    Schiozer, Denis Jose
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2014, 123 : 62 - 71
  • [27] An Efficient Markov Chain Monte Carlo Method for Bayesian System Identification of Tower Structures
    Yang, Jia-Hua
    Lam, Heung-Fai
    PROCEEDINGS OF THE 25TH AUSTRALASIAN CONFERENCE ON MECHANICS OF STRUCTURES AND MATERIALS (ACMSM25), 2020, 37 : 975 - 983
  • [28] Bayesian backcalculation of pavement properties using parallel transitional Markov chain Monte Carlo
    Coletti, Keaton
    Romeo, Ryan C.
    Davis, R. Benjamin
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, 39 (13) : 1911 - 1927
  • [29] Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions
    Shen, Yuan
    Cornford, Dan
    Opper, Manfred
    Archambeau, Cedric
    COMPUTATIONAL STATISTICS, 2012, 27 (01) : 149 - 176
  • [30] Accelerated Bayesian Inversion of Transient Electromagnetic Data Using MCMC Subposteriors
    Li, Hai
    Xue, Guoqiang
    Zhang, Linbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10000 - 10010