Bayesian Markov Chain Monte Carlo inversion of surface-based transient electromagnetic data

被引:2
|
作者
Deng, Shengqiang [1 ]
Zhang, Nuoya [2 ,3 ]
Kuang, Bo [1 ]
Li, Yaohua [1 ]
Sun, Huaifeng [2 ,3 ,4 ]
机构
[1] Guangxi Commun Design Grp Co Ltd, Nanning, Peoples R China
[2] Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
[3] Shandong Univ, Lab Earth Electromagnet Explorat, Jinan, Peoples R China
[4] Shandong Res Inst Ind Technol, Adv Explorat & Transparent City Innovat Ctr, Jinan, Peoples R China
来源
SN APPLIED SCIENCES | 2022年 / 4卷 / 10期
基金
中国国家自然科学基金;
关键词
LEAST-SQUARES INVERSION; EM DATA; ALGORITHM; MODELS;
D O I
10.1007/s42452-022-05134-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional linearized deterministic inversions of transient electromagnetic (TEM) data inherently simplify the non-uniqueness and ill-posed nature of the problem. While Monte-Carlo-type approaches allow for a comprehensive search of the solution space, gaining the ensemble of inferred solutions as comprehensive as possible may be limited utility in high-dimensional problems. To overcome these limitations, we utilize a Markov Chain Monte Carlo (MCMC) inversion approach for surface-based TEM data, which incorporates Bayesian concepts into Monte-Carlo-type global search strategies and can infer the posterior distribution of the models satisfying the observed data. The proposed methodology is first tested on synthetic data for a range of canonical earth models and then applied to a pertinent field dataset. The results are consistent with those obtained by standard linearized inversion approaches, but, as opposed to the latter, allow us to estimate the associated non-linear, non-Gaussian uncertainty.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Bayesian Markov Chain Monte Carlo inversion of surface-based transient electromagnetic data
    Shengqiang Deng
    Nuoya Zhang
    Bo Kuang
    Yaohua Li
    Huaifeng Sun
    SN Applied Sciences, 2022, 4
  • [2] Transdimensional Markov Chain Monte Carlo joint inversion of direct current resistivity and transient electromagnetic data
    Peng, Ronghua
    Yogeshwar, Pritam
    Liu, Yajun
    Hu, Xiangyun
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 224 (02) : 1430 - 1443
  • [3] Electromagnetic Full Waveform Inversion based on Bayesian Markov-chain Monte-Carlo Method
    Yue, Lei
    Yue, Jianhua
    Liu, Zhixin
    Qi, Xuemei
    Cordua, Knud Skou
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ENGINEERING GEOPHYSICS (ICEEG) & SUMMIT FORUM OF CHINESE ACADEMY OF ENGINEERING ON ENGINEERING SCIENCE AND TECHNOLOGY, 2016, 71 : 428 - 431
  • [4] Geostatistical approach to bayesian inversion of geophysical data: Markov chain Monte Carlo method
    Seok-Hoon Oh
    Byung-Doo Kwon
    Earth, Planets and Space, 2001, 53 : 777 - 791
  • [5] Geostatistical approach to bayesian inversion of geophysical data: Markov chain Monte Carlo method
    Oh, SH
    Kwon, BD
    EARTH PLANETS AND SPACE, 2001, 53 (08): : 777 - 791
  • [6] Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling
    Ren, Huiying
    Ray, Jaideep
    Hou, Zhangshuan
    Huang, Maoyi
    Bao, Jie
    Swiler, Laura
    JOURNAL OF APPLIED GEOPHYSICS, 2017, 147 : 68 - 80
  • [7] Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem
    Malinverno, A
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2002, 151 (03) : 675 - 688
  • [8] Markov chain Monte Carlo for petrophysical inversion
    Grana, Dario
    de Figueiredo, Leandro
    Mosegaard, Klaus
    GEOPHYSICS, 2022, 87 (01) : M13 - M24
  • [9] Markov Chain Monte Carlo Estimation for Bayesian Approach Based on Right Censored Data
    Ahmed, Alomari Mohammed
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 1009 - 1015
  • [10] Empirical Markov Chain Monte Carlo Bayesian analysis of fMRI data
    de Pasquale, F.
    Del Gratta, C.
    Romani, G. L.
    NEUROIMAGE, 2008, 42 (01) : 99 - 111