Isochronicity and linearizability of planar polynomial Hamiltonian systems

被引:15
作者
Llibre, Jaume [1 ]
Romanovski, Valery G. [2 ,3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Maribor, Ctr Appl Math & Theoret Phys, SI-2000 Maribor, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, SI-2000 Maribor, Slovenia
关键词
Isochronous centers; Hamiltonian systems; PERIOD FUNCTION; CENTERS; NONLINEARITIES; LINEARIZATION;
D O I
10.1016/j.jde.2015.03.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study isochronicity and linearizability of planar polynomial Hamiltonian systems. First we prove a theorem which supports a negative answer to the following open question stated by Jarque and Villadelprat in [15]: Do there exist planar polynomial Hamiltonian systems of even degree having an isochronous center? Additionally we obtain some conditions for linearizability of complex cubic Hamiltonian systems. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1649 / 1662
页数:14
相关论文
共 27 条
[1]  
[Anonymous], 2012, Singular 3-1-6 | A computer algebra system for polynomial computations
[2]  
[Anonymous], ACM SIGSAM B
[3]   Modular algorithms for computing Grobner bases [J].
Arnold, EA .
JOURNAL OF SYMBOLIC COMPUTATION, 2003, 35 (04) :403-419
[4]  
Chavarriga J., 1999, Qual. Theor. Dyn. Syst, V1, P1, DOI DOI 10.1007/BF02969404
[5]   Non-isochronicity of the center at the origin in polynomial Hamiltonian systems with even degree nonlinearities [J].
Chen, Xingwu ;
Romanovski, Valery G. ;
Zhang, Weinian .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (09) :2769-2778
[6]   Isochronous centers in planar polynomial systems [J].
Christopher, CJ ;
Devlin, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (01) :162-177
[7]   Period function for a class of Hamiltonian systems [J].
Cima, A ;
Gasull, A ;
Mañosas, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 168 (01) :180-199
[8]   Isochronicity for several classes of Hamiltonian systems [J].
Cima, A ;
Manosas, F ;
Villadelprat, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (02) :373-413
[9]  
Cox D., 1997, Ideals, Varieties, and Algorithms
[10]  
Decker W., 2010, SINGULAR (3-1 Library for Computing the Prime Decomposition and Radical of Ideals