Quantum generalized Reed-Solomon codes: Unified framework for quantum maximum-distance-separable codes

被引:200
作者
Li, Zhuo [1 ]
Xing, Li-Juan [1 ]
Wang, Xin-Mei [1 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
关键词
D O I
10.1103/PhysRevA.77.012308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We construct a family of quantum maximum-distance-separable (MDS) codes from classical generalized Reed-Solomon codes and derive the necessary and sufficient condition under which these quantum codes exist. We also give code bounds and show how to construct them analytically. We find that existing quantum MDS codes can be unified under these codes in the sense that when a quantum MDS code exists, then a quantum code of this type with the same parameters also exists. Thus, as far as is known at present, they are the most important family of quantum MDS codes.
引用
收藏
页数:4
相关论文
共 16 条
  • [1] Nonbinary quantum stabilizer codes
    Ashikhmin, A
    Knill, E
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) : 3065 - 3072
  • [2] Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
  • [3] Good quantum error-correcting codes exist
    Calderbank, AR
    Shor, PW
    [J]. PHYSICAL REVIEW A, 1996, 54 (02): : 1098 - 1105
  • [4] Quantum-error correction and orthogonal geometry
    Calderbank, AR
    Rains, EM
    Shor, PW
    Sloane, NJA
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (03) : 405 - 408
  • [5] Five quantum register error correction code for higher spin systems
    Chau, HF
    [J]. PHYSICAL REVIEW A, 1997, 56 (01): : R1 - R4
  • [6] Quantum codes [[6,2,3]]p and [[7,3,3]]p (p ≥ 3) exist
    Feng, KQ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (08) : 2384 - 2391
  • [7] Class of quantum error-correcting codes saturating the quantum Hamming hound
    Gottesman, D
    [J]. PHYSICAL REVIEW A, 1996, 54 (03): : 1862 - 1868
  • [8] On optimal quantum codes
    Grassl, M
    Beth, T
    Rötteler, M
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (01) : 55 - 64
  • [9] Theory of quantum error-correcting codes
    Knill, E
    Laflamme, R
    [J]. PHYSICAL REVIEW A, 1997, 55 (02): : 900 - 911
  • [10] Perfect quantum error correcting code
    Laflamme, R
    Miquel, C
    Paz, JP
    Zurek, WH
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (01) : 198 - 201