Higher-order semiclassical energy expansions for potentials with non-integer powers

被引:3
作者
Nanayakkara, A [1 ]
机构
[1] Inst Fundamental Studies, Kandy, Sri Lanka
来源
PRAMANA-JOURNAL OF PHYSICS | 2003年 / 61卷 / 04期
关键词
eigenenergies; asymptotic; WKB; polynomial potentials;
D O I
10.1007/BF02706123
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present a semiclassical eigenenergy expansion for the potential \x\(alpha) when a is a positive rational number of the form 2n/m (n is a positive integer and m is an odd positive integer). Remarkably, this expansion is found to be identical to the WKB expansion obtained for the potential x(N) (N-even), if 2n/m is replaced by N. Taking the limit m --> 2 of the above expansion, we obtain an explicit asymptotic energy expansion of symmetric odd power potentials \x\(2j+1) (j-positive integer). We then show how to develop approximate semiclassical expansions for potentials \x\(alpha) when alpha is any positive real number.
引用
收藏
页码:739 / 747
页数:9
相关论文
共 8 条
[1]   NUMEROLOGICAL ANALYSIS OF WKB APPROXIMATION IN LARGE ORDER [J].
BENDER, CM ;
OLAUSSEN, K ;
WANG, PS .
PHYSICAL REVIEW D, 1977, 16 (06) :1740-1748
[2]   Chaotic signatures in the spectrum of a quantum double well [J].
Berkovits, R ;
Ashkenazy, Y ;
Horwitz, LP ;
Levitan, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 238 (1-4) :279-284
[3]  
Casati G., 1995, QUANTUM CHAOS ORDER
[4]  
CASATI G, 2000, NEW DIRECTIONS QUANT
[5]  
Gutzwiller MC, 1990, CHAOS CLASSICAL QUAN
[6]   A new asymptotic energy expansion method [J].
Nanayakkara, A .
PHYSICS LETTERS A, 2001, 289 (1-2) :39-43
[7]   Some properties of WKB series [J].
Robnik, M ;
Romanovski, VG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (28) :5093-5104
[8]  
Robnik M, 2000, PROG THEOR PHYS SUPP, P399, DOI 10.1143/PTPS.139.399