On constrained set-valued optimization

被引:0
作者
Ginchev, Ivan [1 ]
Rocca, Matteo [1 ]
机构
[1] Univ Insubria, Dept Econ, I-21100 Varese, Italy
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2007年 / 60卷 / 12期
关键词
set-valued optimization; first-order optimality conditions; Dini derivatives;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The set-valued optimization problem min(C) F(x), G(x) boolean AND (-K) not equal empty set, is considered, where F : R(n) -> R(m) and G : R(n) -> R(p) are set-valued functions, and C subset of R(m) and K C RP are closed convex cones. Two type of solutions, called w-minimizers (weakly efficient points) and i-minimizers (isolated minimizers), are treated. In terms of the Dini set-valued directional derivative first-order necessary conditions for a point to be a w-minimizer, and first-order sufficient conditions for a point to be an i-minimizer are established, both in primal and dual form.
引用
收藏
页码:1277 / 1282
页数:6
相关论文
共 7 条
[1]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[2]  
Chen GY, 2005, LECT NOTES ECON MATH, V541, P1, DOI 10.1007/3-540-28445-1
[3]   First-order optimality conditions in set-valued optimization [J].
Crespi, GP ;
Ginchev, I ;
Rocca, M .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2006, 63 (01) :87-106
[4]  
Ginchev I, 2005, NONCONVEX OPTIM, V79, P427
[5]   Contingent epiderivatives and set-valued optimization [J].
Jahn, J ;
Rauh, R .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1997, 46 (02) :193-211
[6]  
Jahn J., 2004, VECTOR OPTIMIZATION
[7]   A multiplier rule in set-valued optimisation [J].
Khan, AA ;
Raciti, F .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 68 (01) :93-100