ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R

被引:433
作者
Duong, Tarn [1 ]
机构
[1] Inst Pasteur, Unit Anal Images Quantitat, F-75015 Paris, France
关键词
bandwidth selection; data-driven; non-parametric smoothing;
D O I
10.18637/jss.v021.i07
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Kernel smoothing is one of the most widely used non-parametric data smoothing techniques. We introduce a new R package ks for multivariate kernel smoothing. Currently it contains functionality for kernel density estimation and kernel discriminant analysis. It is a comprehensive package for bandwidth matrix selection, implementing a wide range of data-driven diagonal and unconstrained bandwidth selectors.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 20 条
[1]  
ADLER D, 2007, 3D VISUALIZATION DEV
[2]   DENSITY BASED EXPLORATION OF BIVARIATE DATA [J].
BOWMAN, A ;
FOSTER, P .
STATISTICS AND COMPUTING, 1993, 3 (04) :171-177
[3]  
BOWMAN AW, 1984, BIOMETRIKA, V71, P353
[4]  
BOWMAN AW, 2007, SM SOOTHING METHODS
[5]   Cross-validation bandwidth matrices for multivariate kernel density estimation [J].
Duong, T ;
Hazelton, ML .
SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (03) :485-506
[6]   Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimation [J].
Duong, T ;
Hazelton, ML .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 93 (02) :417-433
[7]   Plug-in bandwidth matrices for bivariate kernel density estimation [J].
Duong, T ;
Hazelton, ML .
JOURNAL OF NONPARAMETRIC STATISTICS, 2003, 15 (01) :17-30
[8]  
FENG D, 2007, MISC3D MISCELLANEOUS
[9]   Bandwidth choice for nonparametric classification [J].
Hall, P ;
Kang, KH .
ANNALS OF STATISTICS, 2005, 33 (01) :284-306
[10]  
HALLIWELL B, 1992, FREE RADICAL RES COM, V9, P1