A hybrid particle-mesh method for incompressible active polar viscous gels

被引:14
作者
Ramaswamy, Rajesh [1 ,3 ,4 ]
Bourantas, George [3 ,4 ]
Juelicher, Frank [1 ,4 ]
Sbalzarini, Ivo F. [2 ,3 ,4 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Tech Univ Dresden, Fac Comp Sci, Chair Sci Comp Syst Biol, D-01069 Dresden, Germany
[3] Max Planck Inst Mol Cell Biol & Genet, MOSAIC Grp, D-01307 Dresden, Germany
[4] Ctr Syst Biol Dresden, D-01307 Dresden, Germany
关键词
Numerical simulation; Hybrid particle-mesh method; Active polar gels; Non-Newtonian fluids; Mechanochemical processes; CONVECTION-DIFFUSION EQUATIONS; SELF-ORGANIZATION; PAR PROTEINS; SIMULATION; HYDRODYNAMICS; MICROTUBULES; REVEAL; ORDER; MODEL;
D O I
10.1016/j.jcp.2015.03.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a hybrid particle-mesh method for numerically solving the hydrodynamic equations of incompressible active polar viscous gels. These equations model the dynamics of polar active agents, embedded in a viscous medium, in which stresses are induced through constant consumption of energy. The numerical method is based on Lagrangian particles and staggered Cartesian finite-difference meshes. We show that the method is second-order and first-order accurate with respect to grid and time-step sizes, respectively. Using the present method, we simulate the hydrodynamics in rectangular geometries, of a passive liquid crystal, of an active polar film and of active gels with topological defects in polarization. We show the emergence of spontaneous flow due to Freedericksz transition, and transformation in the nature of topological defects by tuning the activity of the system. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:334 / 361
页数:28
相关论文
共 72 条
[1]   Finite element approximation of nematic liquid crystal flows using a saddle-point structure [J].
Badia, Santiago ;
Guillen-Gonzalez, Francisco ;
Vicente Gutierrez-Santacreu, Juan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) :1686-1706
[2]   Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow [J].
Becker, Roland ;
Feng, Xiaobing ;
Prohl, Andreas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) :1704-1731
[3]   A Lagrangian particle method for reaction-diffusion systems on deforming surfaces [J].
Bergdorf, Michael ;
Sbalzarini, Ivo F. ;
Koumoutsakos, Petros .
JOURNAL OF MATHEMATICAL BIOLOGY, 2010, 61 (05) :649-663
[4]   A staggered compact finite difference formulation for the compressible Navier-Stokes equations [J].
Boersma, BJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 208 (02) :675-690
[5]   Pattern Formation in Active Fluids [J].
Bois, Justin S. ;
Juelicher, Frank ;
Grill, Stephan W. .
PHYSICAL REVIEW LETTERS, 2011, 106 (02)
[6]   Hydrodynamics of active permeating gels [J].
Callan-Jones, A. C. ;
Juelicher, F. .
NEW JOURNAL OF PHYSICS, 2011, 13
[7]   Lattice Boltzmann simulations of liquid crystalline fluids: active gels and blue phases [J].
Cates, M. E. ;
Henrich, O. ;
Marenduzzo, D. ;
Stratford, K. .
SOFT MATTER, 2009, 5 (20) :3791-3800
[8]   Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows [J].
Chaniotis, AK ;
Poulikakos, D ;
Koumoutsakos, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 182 (01) :67-90
[9]   Particle mesh hydrodynamics for astrophysics simulations [J].
Chatelain, Philippe ;
Cottet, Georges-Henri ;
Koumoutsakos, Petros .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (04) :610-618
[10]   HIGH ORDER SEMI-LAGRANGIAN PARTICLE METHODS FOR TRANSPORT EQUATIONS: NUMERICAL ANALYSIS AND IMPLEMENTATION ISSUES [J].
Cottet, G. -H. ;
Etancelin, J. -M. ;
Perignon, F. ;
Picard, C. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04) :1029-1060