Adaptive regularization for nonconvex optimization using inexact function values and randomly perturbed derivatives

被引:10
作者
Bellavia, S. [1 ]
Gurioli, G. [2 ]
Morini, B. [1 ]
Toint, Ph. L. [3 ]
机构
[1] Univ Firenze, Dipartimento Ingn Ind, Florence, Italy
[2] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Florence, Italy
[3] Univ Namur, Namur Ctr Complex Syst naXys, 61 Rue Bruxelles, B-5000 Namur, Belgium
关键词
Evaluation complexity; Regularization methods; Inexact functions and derivatives; Stochastic analysis; CASE EVALUATION COMPLEXITY; CUBIC REGULARIZATION; ALGORITHM; DESCENT;
D O I
10.1016/j.jco.2021.101591
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A regularization algorithm allowing random noise in derivatives and inexact function values is proposed for computing approximate local critical points of any order for smooth unconstrained optimization problems. For an objective function with Lipschitz continuous p-th derivative and given an arbitrary optimality order q < p, an upper bound on the number of function and derivatives evaluations is established for this algorithm. This bound is in expectation, and in terms of a power of the required tolerances, this power depending on whether q 2 or q 2. Moreover these bounds are sharp in the order of the accuracy tolerances. An extension to convexly constrained problems is also outlined. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 37 条
[21]   Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere [J].
de Klerk, Etienne ;
Laurent, Monique .
MATHEMATICAL PROGRAMMING, 2022, 193 (02) :665-685
[22]   Worst-Case Examples for Lasserre's Measure-Based Hierarchy for Polynomial Optimization on the Hypercube [J].
de Klerk, Etienne ;
Laurent, Monique .
MATHEMATICS OF OPERATIONS RESEARCH, 2020, 45 (01) :86-98
[23]   An algorithm for the minimization of nonsmooth nonconvex functions using inexact evaluations and its worst-case complexity [J].
Gratton, S. ;
Simon, E. ;
Toint, Ph L. .
MATHEMATICAL PROGRAMMING, 2021, 187 (1-2) :1-24
[24]   INEXACT OBJECTIVE FUNCTION EVALUATIONS IN A TRUST-REGION ALGORITHM FOR PDE-CONSTRAINED OPTIMIZATION UNDER UNCERTAINTY [J].
Kouri, D. P. ;
Heinkenschloss, M. ;
Ridzal, D. ;
Waanders, B. G. Van Bloemen .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (06) :A3011-A3029
[25]   A DERIVATIVE-FREE TRUST-REGION ALGORITHM FOR THE OPTIMIZATION OF FUNCTIONS SMOOTHED VIA GAUSSIAN CONVOLUTION USING ADAPTIVE MULTIPLE IMPORTANCE SAMPLING [J].
Maggiar, Alvaro ;
Wachter, Andreas ;
Dolinskaya, Irina S. ;
Staum, Jeremy .
SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (02) :1478-1507
[26]  
Nemirovskij A. S., 1983, Wiley-Interscience Series in Discrete Mathematics
[27]   Cubic regularization of Newton method and its global performance [J].
Nesterov, Yurii ;
Polyak, B. T. .
MATHEMATICAL PROGRAMMING, 2006, 108 (01) :177-205
[28]   Random Gradient-Free Minimization of Convex Functions [J].
Nesterov, Yurii ;
Spokoiny, Vladimir .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2017, 17 (02) :527-566
[29]  
Nesterov Yurii, 2014, Introductory Lectures on Convex Optimization: A Basic Course
[30]   A STOCHASTIC LINE SEARCH METHOD WITH EXPECTED COMPLEXITY ANALYSIS [J].
Paquette, Courtney ;
Scheinberg, Katya .
SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) :349-376