Adaptive regularization for nonconvex optimization using inexact function values and randomly perturbed derivatives

被引:10
作者
Bellavia, S. [1 ]
Gurioli, G. [2 ]
Morini, B. [1 ]
Toint, Ph. L. [3 ]
机构
[1] Univ Firenze, Dipartimento Ingn Ind, Florence, Italy
[2] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Florence, Italy
[3] Univ Namur, Namur Ctr Complex Syst naXys, 61 Rue Bruxelles, B-5000 Namur, Belgium
关键词
Evaluation complexity; Regularization methods; Inexact functions and derivatives; Stochastic analysis; CASE EVALUATION COMPLEXITY; CUBIC REGULARIZATION; ALGORITHM; DESCENT;
D O I
10.1016/j.jco.2021.101591
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A regularization algorithm allowing random noise in derivatives and inexact function values is proposed for computing approximate local critical points of any order for smooth unconstrained optimization problems. For an objective function with Lipschitz continuous p-th derivative and given an arbitrary optimality order q < p, an upper bound on the number of function and derivatives evaluations is established for this algorithm. This bound is in expectation, and in terms of a power of the required tolerances, this power depending on whether q 2 or q 2. Moreover these bounds are sharp in the order of the accuracy tolerances. An extension to convexly constrained problems is also outlined. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 37 条
[1]  
[Anonymous], 2020, IN PRESS, DOI DOI 10.1007/S10107-020-01468-3
[2]  
Arjevani Y, 2020, PR MACH LEARN RES, V125
[3]   Stochastic analysis of an adaptive cubic regularization method under inexact gradient evaluations and dynamic Hessian accuracy [J].
Bellavia, Stefania ;
Gurioli, Gianmarco .
OPTIMIZATION, 2022, 71 (01) :227-261
[4]   Adaptive cubic regularization methods with dynamic inexact Hessian information and applications to finite-sum minimization [J].
Bellavia, Stefania ;
Gurioli, Gianmarco ;
Morini, Benedetta .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (01) :764-799
[5]   ADAPTIVE REGULARIZATION ALGORITHMS WITH INEXACT EVALUATIONS FOR NONCONVEX OPTIMIZATION [J].
Bellavia, Stefania ;
Guriol, Gianmarco ;
Morini, Benedetta ;
Toint, Philippe L. .
SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) :2881-2915
[6]  
Berahas A.S., 2019, ARXIV191004055
[7]   A Theoretical and Empirical Comparison of Gradient Approximations in Derivative-Free Optimization [J].
Berahas, Albert S. ;
Cao, Liyuan ;
Choromanski, Krzysztof ;
Scheinberg, Katya .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (02) :507-560
[8]   Complexity analysis of interior point algorithms for non-Lipschitz and nonconvex minimization [J].
Bian, Wei ;
Chen, Xiaojun ;
Ye, Yinyu .
MATHEMATICAL PROGRAMMING, 2015, 149 (1-2) :301-327
[9]   Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models [J].
Birgin, E. G. ;
Gardenghi, J. L. ;
Martinez, J. M. ;
Santos, S. A. ;
Toint, Ph. L. .
MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) :359-368
[10]  
Blanchet J., 2019, INFORMS J OPTIM, V1, P92