Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging

被引:26
作者
Dholakia, Kishan [1 ]
Lee, Woei Ming [1 ]
Paterson, Lynn [2 ]
MacDonald, Michael P. [4 ]
McDonald, Richard [1 ]
Andreev, Igor [1 ]
Mthunzi, Patience [1 ,3 ]
Brown, C. Tom A. [1 ]
Marchington, Robert F. [1 ]
Riches, Andrew C. [5 ]
机构
[1] Univ St Andrews, Scottish Univ Phys Alliance, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
[2] Heriot Watt Univ, Scottish Univ Phys Alliance, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] CSIR, Natl Laser Ctr, ZA-0001 Pretoria, South Africa
[4] Univ Dundee, Sch Engn Phys & Math, Elect Engn & Phys Div, Dundee DD1 4HN, Scotland
[5] Univ St Andrews, Bute Med Sch, St Andrews KY16 9TS, Fife, Scotland
基金
英国工程与自然科学研究理事会;
关键词
cell tagging; flow cytometry; optical sorting; optical trapping; optical tweezers;
D O I
10.1109/JSTQE.2007.911314
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We review the emergent techniques of microfluidic sorting of colloidal and cellular samples using optical forces. We distinguish between what we term as passive and active forms of particle sorting where we can sort either with the use of a fluorescent marker (active) or based on physical attributes alone (passive). We then examine cell sorting with optical potential landscapes such as a Bessel light beam and a multibeam interference pattern. For both forms of optical potential energy landscape, we further present the possibility of enhancing the optical sorting process by tagging dielectric microspheres onto the cells. The results suggest that the methodology of tagging can enhance the sorting of cells as they subsequently respond more strongly to an applied optical field or potential energy landscape. This technique presents a simple method to enhance the sorting process.
引用
收藏
页码:1646 / 1654
页数:9
相关论文
共 55 条
[11]   An optical nanotrap array movable over a milimetre range [J].
Cizmar, T. ;
Siler, M. ;
Zemanek, P. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 84 (1-2) :197-203
[12]   Optical conveyor belt for delivery of submicron objects -: art. no. 174101 [J].
Cizmár, T ;
Garcés-Chávez, V ;
Dholakia, K ;
Zemánek, P .
APPLIED PHYSICS LETTERS, 2005, 86 (17) :1-3
[13]   Optical sorting and detection of submicrometer objects in a motional standing wave [J].
Cizmar, Tomas ;
Siler, Martin ;
Sery, Mojmir ;
Zemanek, Pavel ;
Garces-Chavez, Veneranda ;
Dholakia, Kishan .
PHYSICAL REVIEW B, 2006, 74 (03)
[14]  
Dholakia K, 2006, NANO TODAY, V1, P18, DOI 10.1016/S1369-7021(06)71362-1
[15]   Two-photon excitation fluorescence microscopy with a high depth of field using an axicon [J].
Dufour, Pascal ;
Piche, Michel ;
De Koninck, Yves ;
McCarthy, Nathalie .
APPLIED OPTICS, 2006, 45 (36) :9246-9252
[16]   Enhanced optical guiding of colloidal particles using a supercontinuum light source [J].
Fischer, P. ;
Carruthers, A. E. ;
Volke-Sepulveda, K. ;
Wright, E. M. ;
Brown, C. T. A. ;
Sibbett, W. ;
Dholakia, K. .
OPTICS EXPRESS, 2006, 14 (12) :5792-5802
[17]   A microfabricated fluorescence-activated cell sorter [J].
Fu, AY ;
Spence, C ;
Scherer, A ;
Arnold, FH ;
Quake, SR .
NATURE BIOTECHNOLOGY, 1999, 17 (11) :1109-1111
[18]   Optical manipulation of microparticles and cells on silicon nitride waveguides [J].
Gaugiran, S ;
Gétin, S ;
Fedeli, JM ;
Colas, G ;
Fuchs, A ;
Chatelain, F ;
Dérouard, J .
OPTICS EXPRESS, 2005, 13 (18) :6956-6963
[19]   Analytical approach to sorting in periodic and random potentials [J].
Gleeson, JP ;
Sancho, JM ;
Lacasta, AM ;
Lindenberg, K .
PHYSICAL REVIEW E, 2006, 73 (04)
[20]   A revolution in optical manipulation [J].
Grier, DG .
NATURE, 2003, 424 (6950) :810-816