New transformations of aggregation functions based on monotone systems of functions

被引:2
|
作者
Jin, LeSheng [1 ]
Mesiar, Radko [2 ,3 ]
Kalina, Martin [2 ]
Spirkova, Jana [4 ]
Borkotokey, Surajit [5 ]
机构
[1] Nanjing Normal Univ, Business Sch, Nanjing, Jiangsu, Peoples R China
[2] Slovak Univ Technol Bratislava, Fac Civil Engn, Radlinskeho 11, Sk-81005 Bratislava, Slovakia
[3] Palacky Univ Olomouc, Dept Algebra & Geometry, Fac Sci, 17 Listopadu 12, Cz-77900 Olomouc, Czech Republic
[4] Matej Bel Univ Banska Bystrica, Fac Econ, Tajovskeho 10, SK-97590 Banska Bystrica, Slovakia
[5] Dibrugarh Univ, Dept Math, Dibrugarh 786004, Assam, India
关键词
Aggregation function; Convex sum; Copula; *-product; GCS-transform; Weighted arithmetic mean; COPULAS;
D O I
10.1016/j.ijar.2019.12.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces a Generalized-Convex-Sum-Transformation of aggregation functions. It has the form of a transformation of aggregation functions by monotone systems of functions. A special case of the proposed Generalized-Convex-Sum-Transformation is the well-known *-product, also called the Darsow product of copulas. Similarly, our approach covers Choquet integrals with respect to capacities induced by the considered aggregation function. The paper offers basic definitions and some properties of the mentioned transformation. Various examples illustrating the transformation are presented. The paper also gives two alternative transformations of aggregation functions under which the dimension of the transformed aggregation functions is higher than that of the original one. Interestingly, if a copula is transformed, under some conditions put on the monotone systems of functions, the transformed aggregation function is again a copula. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:79 / 95
页数:17
相关论文
共 50 条
  • [21] Bimigrativity of binary aggregation functions
    Lopez-Molina, C.
    De Baets, B.
    Bustince, H.
    Indurain, E.
    Stupnanova, A.
    Mesiar, R.
    INFORMATION SCIENCES, 2014, 274 : 225 - 235
  • [22] A note on uniform continuity of super-additive transformations of aggregation functions
    Siposova, A.
    Siran, J.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2023, 20 (02): : 167 - 171
  • [23] Extremal symmetrization of aggregation functions
    Radko Mesiar
    Andrea Stupňanová
    Ronald R. Yager
    Annals of Operations Research, 2018, 269 : 535 - 548
  • [24] Set-based extended aggregation functions
    Mesiar, Radko
    Kolesarova, Anna
    Gomez, Daniel
    Montero, Javier
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2019, 34 (09) : 2039 - 2054
  • [25] Generalized deviation functions and construction of aggregation functions
    Stupilanova, Andrea
    Smrek, Peter
    PROCEEDINGS OF THE 11TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT 2019), 2019, 1 : 96 - 100
  • [26] Extremal values-based aggregation functions
    Halas, Radomir
    Mesiar, Radko
    Kolesarova, Anna
    Saadati, Reza
    Herrera, Francisco
    Rodriguez-Martinez, Iosu
    Bustince, Humberto
    FUZZY SETS AND SYSTEMS, 2024, 493
  • [27] Concepts of generalized concavity based on aggregation functions
    Kon, Masamichi
    Kuwano, Hiroaki
    FUZZY SETS AND SYSTEMS, 2012, 198 : 112 - 127
  • [28] Aggregation functions with given super-additive and sub-additive transformations
    Kouchakinejad, Fateme
    Siposova, Alexandra
    Siran, Jozef
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2017, 46 (03) : 225 - 234
  • [29] A generalization of the migrativity property of aggregation functions
    Bustince, H.
    De Baets, B.
    Fernandez, J.
    Mesiar, R.
    Montero, J.
    INFORMATION SCIENCES, 2012, 191 : 76 - 85
  • [30] Monograph: Aggregation Functions
    Grabisch, Michel
    Marichal, Jean-Luc
    Mesiar, Radko
    Pap, Endre
    ACTA POLYTECHNICA HUNGARICA, 2009, 6 (01) : 79 - 94