Thin Water Films Enable Low-Temperature Magnesite Growth Under Conditions Relevant to Geologic Carbon Sequestration

被引:28
作者
Kerisit, Sebastien N. [1 ]
Mergelsberg, Sebastian T. [1 ]
Thompson, Christopher J. [2 ]
White, Signe K. [2 ]
Loring, John S. [1 ]
机构
[1] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99354 USA
[2] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA
关键词
carbon dioxide; basalt; forsterite; infrared spectroscopy; geochemical modeling; amorphous magnesium carbonate; activation energy; low water activity; AMORPHOUS CALCIUM-CARBONATE; SUPERCRITICAL CO2; WOLLASTONITE CARBONATION; FORSTERITE DISSOLUTION; DIELECTRIC-CONSTANT; MINERAL CARBONATION; OLIVINE CARBONATION; SOLUBILITY; ADSORPTION; REACTIVITY;
D O I
10.1021/acs.est.1c03370
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Injecting supercritical CO2 (scCO(2)) into basalt formations for long-term storage is a promising strategy for mitigating CO2 emissions. Mineral carbonation can result in permanent entrapment of CO2; however, carbonation kinetics in thin H2O films in humidified scCO(2) is not well understood. We investigated forsterite (Mg2SiO4) carbonation to magnesite (MgCO3) via amorphous magnesium carbonate (AMC; MgCO3 center dot xH(2)O, 0.5 < x < 1), with the goal to establish the fundamental controls on magnesite growth rates at low H2O activity and temperature. Experiments were conducted at 25, 40, and 50 degrees C in 90 bar CO2 with a H2O film thickness on forsterite that averaged 1.78 +/- 0.05 monolayers. In situ infrared spectroscopy was used to monitor forsterite dissolution and the growth of AMC, magnesite, and amorphous SiO2 as a function of time. Geochemical kinetic modeling showed that magnesite was supersaturated by 2 to 3 orders of magnitude and grew according to a zero-order rate law. The results indicate that the main drivers for magnesite growth are sustained high supersaturation coupled with low H2O activity, a combination of thermodynamic conditions not attainable in bulk aqueous solution. This improved understanding of reaction kinetics can inform subsurface reactive transport models for better predictions of CO2 fate and transport.
引用
收藏
页码:12539 / 12548
页数:10
相关论文
共 84 条
  • [51] Emerging investigator series: ion diffusivities in nanoconfined interfacial water films contribute to mineral carbonation thresholds
    Miller, Quin R. S.
    Kaszuba, John P.
    Kerisit, Sebastien N.
    Schaef, H. Todd
    Bowden, Mark E.
    McGrail, B. Peter
    Rosso, Kevin M.
    [J]. ENVIRONMENTAL SCIENCE-NANO, 2020, 7 (04) : 1068 - 1081
  • [52] Quantitative Review of Olivine Carbonation Kinetics: Reactivity Trends, Mechanistic Insights, and Research Frontiers
    Miller, Quin R. S.
    Schaef, H. Todd
    Kaszuba, John P.
    Gadikota, Greeshma
    McGrail, B. Peter
    Rosso, Kevin M.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2019, 6 (08) : 431 - 442
  • [53] Surface-Catalyzed Oxygen Exchange during Mineral Carbonation in Nanoscale Water Films
    Miller, Quin R. S.
    Dixon, David A.
    Burton, Sarah D.
    Walter, Eric D.
    Hoyt, David W.
    McNeill, Ashley S.
    Moon, Joshua D.
    Thanthiriwatte, K. Sahan
    Ilton, Eugene S.
    Qafoku, Odeta
    Thompson, Christopher J.
    Schaef, Herbert T.
    Rosso, Kevin M.
    Loring, John S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (20) : 12871 - 12885
  • [54] Anomalously low activation energy of nanoconfined MgCO3 precipitation
    Miller, Quin R. S.
    Kaszuba, John P.
    Schaef, Herbert T.
    Bowden, Mark E.
    McGrail, B. Peter
    Rosso, Kevin M.
    [J]. CHEMICAL COMMUNICATIONS, 2019, 55 (48) : 6835 - 6837
  • [55] Water Structure Controls Carbonic Acid Formation in Adsorbed Water Films
    Miller, Quin R. S.
    Ilton, Eugene S.
    Qafoku, Odeta
    Dixon, David A.
    Vasiliu, Monica
    Thompson, Christopher J.
    Schaef, Herbert T.
    Rosso, Kevin M.
    Loring, John S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (17): : 4988 - 4994
  • [56] Wollastonite carbonation in water-bearing supercritical CO2: Effects of water saturation conditions, temperature, and pressure
    Min, Yujia
    Jun, Young-Shin
    [J]. CHEMICAL GEOLOGY, 2018, 483 : 239 - 246
  • [57] Wollastonite Carbonation in Water-Bearing Supercritical CO2: Effects of Particle Size
    Min, Yujia
    Li, Qingyun
    Voltolini, Marco
    Kneafsey, Timothy
    Jun, Young-Shin
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (21) : 13044 - 13053
  • [58] Effects of nano-confinement on Zn(II) adsorption to nanoporous silica
    Nelson, Joey
    Bargar, John R.
    Wasylenki, Laura
    Brown, Gordon E., Jr.
    Maher, Kate
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2018, 240 : 80 - 97
  • [59] Mineral Carbonation of CO2
    Oelkers, Eric H.
    Gislason, Sigurdur R.
    Matter, Juerg
    [J]. ELEMENTS, 2008, 4 (05) : 333 - 337
  • [60] Parkhurst D., 2013, US Geol. Surv. Tech. Methods, V6, P497