Oblique derivative problem for quasilinear mixed equations with parabolic degeneracy in multiply connected domains

被引:0
作者
Wen, G. C. [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
oblique derivative problem; quasilinear mixed equations; parabolic degeneracy; multiply connected domains;
D O I
10.1080/17476930903394796
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article deals with the oblique derivative problem for second order quasilinear equations of mixed type in multiply connected domains, which includes the Tricomi problem of the Chaplygin equation in gas dynamics as a special case. We first give the representation of solutions of the boundary value problem for the equations, and then prove the uniqueness and existence of solutions for the problem by a new method, using complex functions in the domain of ellipticity and hyperbolic complex functions in the domain where the equation is hyperbolic.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 10 条
[1]  
Bers L., 1958, Surveys Appl. Math, Vvol 3
[2]  
Bitsadze A.V., 1988, Some Classes of Partial Differential Equations, VVolume 4
[3]  
Rassias JM, 1990, LECT NOTES MIXED TYP
[4]  
Smirnov M. M., 1978, Equations of Mixed Type
[5]  
SUN HS, 1992, SCI CHINA SER A, V35, P14
[6]  
Wen G. C., 2006, ACTA MATH SINICA, V46, P1358
[7]  
WEN GC, 2002, LINEAR QUASILINEAR E
[8]  
WEN GC, 2005, COMPLEX VARIABLES, V50, P707
[9]  
WEN GC, 1990, BOUNDARY VALUE PROBL
[10]   The mixed boundary-value problem for second order elliptic equations with degenerate curve on the sides of an angle [J].
Wen, Guochun .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) :1602-1613