Quantization of gravity in spherical harmonic basis

被引:3
|
作者
Kallosh, Renata [1 ,2 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
SYSTEMS;
D O I
10.1103/PhysRevD.104.086023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform canonical quantization of gravity in the background of a Schwarzschild black hole in the generalized Regge-Wheeler gauge proposed in Kallosh and Rahman [Quantization of gravity in the black hole background, Phys. Rev. D 104, 086008 (2021)]. We find that the Hamiltonian at the quadratic level is unitary and ghost-free. Two canonical degrees of freedom are associated with Zerilli-Moncrief and Cunningham-Price-Moncrief functions of the metric perturbations. The l < 2 part of the Hamiltonian vanishes. This quantization with the unitary Hamiltonian for gravity is valid also in Minkowski space in spherical coordinates.
引用
收藏
页数:8
相关论文
共 19 条
  • [1] The Harmonic Oscillator on Three-Dimensional Spherical and Hyperbolic Spaces: Curvature Dependent Formalism and Quantization
    Carinena, Jose F.
    Ranada, Manuel F.
    Santander, Mariano
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (07) : 2170 - 2178
  • [2] ON THE QUANTIZATION OF DAMPED HARMONIC OSCILLATOR
    Ghosh, Subrata
    Choudhuri, Amitava
    Talukdar, B.
    ACTA PHYSICA POLONICA B, 2009, 40 (01): : 49 - 57
  • [3] Quantization of the damped harmonic oscillator
    Serhan, M.
    Abusini, M.
    Al-Jamel, Ahmed
    El-Nasser, H.
    Rabei, Eqab M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
  • [4] Stochastic quantization of the spherical model and supersymmetry
    Bienzobaz, P. F.
    Gomes, Pedro R. S.
    Gomes, M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [5] A theoretical basis for the Harmonic Balance Method
    Garcia-Saldana, Johanna D.
    Gasull, Armengol
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (01) : 67 - 80
  • [6] Nonlinear dynamics of quadratic gravity in spherical symmetry
    Held, Aaron
    Lim, Hyun
    PHYSICAL REVIEW D, 2021, 104 (08)
  • [7] Electric properties of molecules confined by the spherical harmonic potential
    Choluj, Marta
    Bartkowiak, Wojciech
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2019, 119 (20)
  • [8] Covariance in models of loop quantum gravity: Spherical symmetry
    Bojowald, Martin
    Brahma, Suddhasattwa
    Reyes, Juan D.
    PHYSICAL REVIEW D, 2015, 92 (04):
  • [9] Exact path integral quantization of generic 2D dilaton gravity
    Kummer, W
    Liebl, H
    Vassilevich, DV
    NUCLEAR PHYSICS B, 1997, 493 (1-2) : 491 - 502
  • [10] Free vibration of a spherical liquid drop attached to a conical base in zero gravity
    Chiba, M.
    Michiue, S.
    Katayama, I.
    JOURNAL OF SOUND AND VIBRATION, 2012, 331 (08) : 1908 - 1925