Performance analysis on a Compressed Humid Air Energy Storage System

被引:0
|
作者
Zhang, Huisheng [1 ]
Zhou, Dengji [1 ]
Huang, Di [1 ]
Wang, Xinhui [1 ]
机构
[1] Shanghai Jiao Tong Univ, Gas Turbine Res Inst, Shanghai 200240, Peoples R China
来源
ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 6B | 2015年
关键词
TECHNOLOGY;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the growing need for the use of electricity, power plants sometimes cannot generate enough power during the high demand periods. Thus various methods are introduced to solve this situation. Compressed air energy storage (CAES) technology seems to be a good solution to both peaking power demand and intermittent energy utilization transformed from renewable energy source like wind energy. Utilization of heat generated from the air compression process is a crucial problem of this technology. A compressed air energy storage system, with humid air as working fluid, is designed in this paper. In this system, heat of compressing air is transformed to the latent heat of water vapour, decreasing the power consumption of compressor and increasing energy generated per volume of storage. A Compressed Humid Air Energy Storage (CHAES) system model is established in this paper to simulate the performance of this system. Then the performance of this new system is evaluated by comparison to conventional CAES system, based on the simulation result. The result of this paper confirm the growing interest to CAES as a solution to peaking power demand and intermittent energy utilization, and indicates that CHAES system, as a great improvement of CAES system, has huge potential in the future.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Performance analysis of diabatic compressed air energy storage (DCAES) system
    Zhang, Jianjun
    Zhou, Shengni
    Li, Shuaiqi
    Song, Wenji
    Feng, Ziping
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 4369 - 4374
  • [2] Performance analysis on solar heat storage type compressed air energy storage system
    Zhu, Rui
    Xu, Yujie
    Li, Bin
    Chen, Haisheng
    Guo, Huan
    Li, Yuping
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2019, 40 (06): : 1536 - 1544
  • [3] Performance analysis and optimization of gas storage device in compressed air energy storage system
    Pang, Yongchao (energystoragepang@foxmail.com), 1600, Chemical Industry Press Co., Ltd. (35):
  • [4] Performance Analysis of a High Temperature Hybrid Compressed Air Energy Storage System
    Zhao, Pan (panzhao@mail.xjtu.edu.cn), 1600, Science Press (41):
  • [5] Performance assessment and optimization of a combined heat and power system based on compressed air energy storage system and humid air turbine cycle
    Zhao, Pan
    Dai, Yiping
    Wang, Jiangfeng
    ENERGY CONVERSION AND MANAGEMENT, 2015, 103 : 562 - 572
  • [6] Exergy Analysis of Compressed Air Energy Storage System
    Liu, Guang-lin
    Liu, Chang-miao
    INTERNATIONAL CONFERENCE ON OPTICS, ELECTRONICS AND COMMUNICATIONS TECHNOLOGY (OECT), 2017, 175 : 138 - 142
  • [7] Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage
    Guo, Cong
    Xu, Yujie
    Zhang, Xinjing
    Guo, Huan
    Zhou, Xuezhi
    Liu, Chang
    Qin, Wei
    Li, Wen
    Dou, Binlin
    Chen, Haisheng
    ENERGY, 2017, 135 : 876 - 888
  • [8] PERFORMANCE OF A WATER COMPENSATED COMPRESSED AIR ENERGY STORAGE SYSTEM
    Arnulfi, Gianmario L.
    Marini, Martino
    PROCEEDINGS OF THE ASME TURBO EXPO 2008, VOL 2, 2008, : 577 - 587
  • [9] Compressed air energy storage system
    Saruta, Hiroki
    Sato, Takashi
    Nakamichi, Ryo
    Toshima, Masatake
    Kubo, Yohei
    R and D: Research and Development Kobe Steel Engineering Reports, 2020, 70 (01): : 42 - 46
  • [10] Performance Analysis of a Diabatic Compressed Air Energy Storage System Fueled with Green Hydrogen
    Migliari, Luca
    Micheletto, Davide
    Cocco, Daniele
    ENERGIES, 2023, 16 (20)