Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes

被引:75
作者
Chen, Changxin [1 ,2 ]
Lin, Yu [3 ]
Zhou, Wu [4 ,5 ,6 ]
Gong, Ming [2 ]
He, Zhuoyang [1 ]
Shi, Fangyuan [1 ]
Li, Xinyue [1 ]
Wu, Justin Zachary [2 ]
Lam, Kai Tak [7 ]
Wang, Jian Nong [8 ]
Yang, Fan [9 ]
Zeng, Qiaoshi [10 ,11 ]
Guo, Jing [7 ]
Gao, Wenpei [12 ]
Zuo, Jian-Min [12 ]
Liu, Jie [13 ]
Hong, Guosong [2 ]
Antaris, Alexander L. [2 ]
Lin, Meng-Chang [14 ]
Mao, Wendy L. [3 ,9 ]
Dai, Hongjie [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Micro Nano Elect, Nat Key Lab Sci & Technol Micro Nano Fabricat Key, Shanghai, Peoples R China
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[3] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[4] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[6] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing, Peoples R China
[7] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL USA
[8] East China Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai, Peoples R China
[9] Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA
[10] Ctr High Pressure Sci & Technol Adv Res, Shanghai, Peoples R China
[11] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Metall Mat, Nanjing, Peoples R China
[12] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL USA
[13] Duke Univ, Dept Chem, Durham, NC USA
[14] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 国家重点研发计划; 美国能源部;
关键词
ON-SURFACE SYNTHESIS; FABRICATION;
D O I
10.1038/s41928-021-00633-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene nanoribbons are of potential use in the development of electronic and optoelectronic devices. However, the preparation of narrow and long nanoribbons with smooth edges, sizeable bandgaps and high mobilities is challenging. Here we show that sub-10-nm-wide semiconducting graphene nanoribbons with atomically smooth closed edges can be produced by squashing carbon nanotubes using a high-pressure and thermal treatment. With this approach, nanoribbons as narrow as 1.4 nm can be created, and up to 54% of single- and double-walled nanotubes in a sample can be converted into edge-closed nanoribbons. We also fabricate edge-opened nanoribbons using nitric acid as the oxidant to selectively etch the edges of the squashed nanotubes under high pressure. A field-effect transistor fabricated using a 2.8-nm-wide edge-closed nanoribbon exhibits an on/off current ratio of more than 10(4), from which a bandgap of around 494 meV is estimated. The device also exhibits a field-effect mobility of 2,443 cm(2) V-1 s(-1) and an on-state channel conductivity of 7.42 mS. Narrow, long graphene nanoribbons with atomically smooth and defect-free edges can be produced by squashing carbon nanotubes, and can be used to fabricate a sub-3-nm-wide channel field-effect transistor with a mobility of 2,443 cm(2) V-1 s(-1).
引用
收藏
页码:653 / 663
页数:11
相关论文
共 51 条
  • [1] Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask
    Bai, Jingwei
    Duan, Xiangfeng
    Huang, Yu
    [J]. NANO LETTERS, 2009, 9 (05) : 2083 - 2087
  • [2] Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and ex Situ Characterization
    Barin, Gabriela Bonin
    Fairbrother, Andrew
    Rotach, Lukas
    Bayle, Maxime
    Paillet, Matthieu
    Liang, Liangbo
    Meunier, Vincent
    Hauert, Roland
    Dumslaff, Tim
    Narita, Akimitsu
    Muellen, Klaus
    Sahabudeen, Hafeesudeen
    Berger, Reinhard
    Feng, Xinliang
    Fasel, Roman
    Ruffieux, Pascal
    [J]. ACS APPLIED NANO MATERIALS, 2019, 2 (04): : 2184 - 2192
  • [3] Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors
    Basu, D.
    Gilbert, M. J.
    Register, L. F.
    Banerjee, S. K.
    MacDonald, A. H.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (04)
  • [4] Atomically precise bottom-up fabrication of graphene nanoribbons
    Cai, Jinming
    Ruffieux, Pascal
    Jaafar, Rached
    Bieri, Marco
    Braun, Thomas
    Blankenburg, Stephan
    Muoth, Matthias
    Seitsonen, Ari P.
    Saleh, Moussa
    Feng, Xinliang
    Muellen, Klaus
    Fasel, Roman
    [J]. NATURE, 2010, 466 (7305) : 470 - 473
  • [5] Graphene Nanoribbons Under Mechanical Strain
    Chen, Changxin
    Wu, Justin Zachary
    Lam, Kai Tak
    Hong, Guosong
    Gong, Ming
    Zhang, Bo
    Lu, Yang
    Antaris, Alexander L.
    Diao, Shuo
    Guo, Jing
    Dai, Hongjie
    [J]. ADVANCED MATERIALS, 2015, 27 (02) : 303 - 309
  • [6] Graphene nano-ribbon electronics
    Chen, Zhihong
    Lin, Yu-Ming
    Rooks, Michael J.
    Avouris, Phaedon
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) : 228 - 232
  • [7] Collapse of single-wall carbon nanotubes is diameter dependent
    Elliott, JA
    Sandler, JKW
    Windle, AH
    Young, RJ
    Shaffer, MSP
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (09) : 095501 - 1
  • [8] High vacuum synthesis and ambient stability of bottom-up graphene nanoribbons
    Fairbrother, Andrew
    Sanchez-Valencia, Juan-Ramon
    Lauber, Beat
    Shorubalko, Ivan
    Ruffieux, Pascal
    Hintermann, Tobias
    Fasel, Roman
    [J]. NANOSCALE, 2017, 9 (08) : 2785 - 2792
  • [9] Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering
    Fang, Tian
    Konar, Aniruddha
    Xing, Huili
    Jena, Debdeep
    [J]. PHYSICAL REVIEW B, 2008, 78 (20)
  • [10] Vibrational properties of graphene nanoribbons by first-principles calculations
    Gillen, Roland
    Mohr, Marcel
    Thomsen, Christian
    Maultzsch, Janina
    [J]. PHYSICAL REVIEW B, 2009, 80 (15):