MARTINGALE AND STATIONARY SOLUTIONS FOR STOCHASTIC NON-NEWTONIAN FLUIDS

被引:1
作者
Guo, Boling [1 ]
Guo, Chunxiao [2 ]
Zhang, Jingjun [3 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
[3] Jiaxing Univ, Coll Math & Informat Engn, Jiaxing, Zhejiang, Peoples R China
关键词
MULTIPOLAR VISCOUS FLUIDS; EQUATION; ATTRACTORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic non-Newtonian fluids with multiplicative noise are studied under the case of shear thinning and shear thickening and the existence of martingale solutions and stationary solutions is achieved for the first time.
引用
收藏
页码:303 / 326
页数:24
相关论文
共 25 条
[1]  
[Anonymous], 1969, QUELQUES METHODES RE
[2]   YOUNG MEASURE-VALUED SOLUTIONS FOR NON-NEWTONIAN INCOMPRESSIBLE FLUIDS [J].
BELLOUT, H ;
BLOOM, F ;
NECAS, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (11-12) :1763-1803
[3]   PHENOMENOLOGICAL BEHAVIOR OF MULTIPOLAR VISCOUS FLUIDS [J].
BELLOUT, H ;
BLOOM, F ;
NECAS, J .
QUARTERLY OF APPLIED MATHEMATICS, 1992, 50 (03) :559-583
[4]  
BELLOUT H, 1995, DIFFERENTIAL INTEGRA, V8
[5]   DIPOLAR FLUIDS [J].
BLEUSTEIN, JL ;
GREEN, AE .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1967, 5 (04) :323-+
[6]   Regularization of a non-Newtonian system in an unbounded channel: Existence and uniqueness of solutions [J].
Bloom, F ;
Hao, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (03) :281-309
[7]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341
[8]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393
[9]  
Da Prato G, 1992, STOCHASTIC EQUATIONS
[10]  
Da Prato G, 1996, ERGODICITY INFINITE