Slightly Tapered Optical Fiber With Inner Air-Cavity as a Miniature and Versatile Sensing Device

被引:14
作者
Chen, H. F. [1 ,2 ,3 ,4 ]
Wang, D. N. [1 ,2 ,3 ,5 ]
Hong, W. [6 ]
机构
[1] China Jiliang Univ, Coll Opt & Elect Technol, Hangzhou 310018, Zhejiang, Peoples R China
[2] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[3] Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[4] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[5] Hubei Polytech Univ, Sch Elect Elect & Informat Engn, Huangshi, Peoples R China
[6] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Air-cavity; fiber sensor; refractive index sensing; strain sensing; temperature sensing; SUBWAVELENGTH-DIAMETER SILICA; GRATING TECHNOLOGY; REFRACTIVE-INDEX; BRAGG GRATINGS; TEMPERATURE; INTERFEROMETERS; SENSITIVITY; SENSORS; STRAIN;
D O I
10.1109/JLT.2014.2372057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A long-standing goal of optical fiber sensors is the development of a miniature and versatile optical fiber device, which is capable of performing multiple sensing functions, and supporting a simple and efficient system. Here, we demonstrate an elegant way of achieving such a device by use of an inner air-cavity in a slightly tapered optical fiber. Owing to the small size of only a few tens microns and inner cavity structure, a spatially precise "point sensing" with high sensitivity and good robustness can be readily achieved. The refractive index, strain, and temperature sensitivities obtained are similar to 1060 nm/RIU (refractive index unit), 22.5 pm/mu epsilon, and 80 pm/degrees C, respectively. The inner air-cavity-based device is flexible, ultracompact, versatile, and highly efficient, which provides a promising new way for a wide range of optical fiber sensing applications.
引用
收藏
页码:62 / 68
页数:7
相关论文
共 40 条
  • [11] Optical sensing with photonic crystal fibers
    Frazao, Orlando
    Santos, Jose L.
    Araujo, Francisco M.
    Ferreira, Luis A.
    [J]. LASER & PHOTONICS REVIEWS, 2008, 2 (06) : 449 - 459
  • [12] Supported microfiber loops for optical sensing
    Guo, Xin
    Tong, Limin
    [J]. OPTICS EXPRESS, 2008, 16 (19) : 14429 - 14434
  • [13] PHOTOSENSITIVITY IN OPTICAL FIBER WAVEGUIDES - APPLICATION TO REFLECTION FILTER FABRICATION
    HILL, KO
    FUJII, Y
    JOHNSON, DC
    KAWASAKI, BS
    [J]. APPLIED PHYSICS LETTERS, 1978, 32 (10) : 647 - 649
  • [14] Fiber Bragg grating technology fundamentals and overview
    Hill, KO
    Meltz, G
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (08) : 1263 - 1276
  • [15] Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer
    Hu, L. M.
    Chan, C. C.
    Dong, X. Y.
    Wang, Y. P.
    Zu, P.
    Wong, W. C.
    Qian, W. W.
    Li, T.
    [J]. IEEE PHOTONICS JOURNAL, 2012, 4 (01): : 114 - 118
  • [16] Optical fiber in-line Mach-Zehnder interferometer based on dual internal mirrors formed by a hollow sphere pair
    Hu, T. Y.
    Wang, D. N.
    [J]. OPTICS LETTERS, 2013, 38 (16) : 3036 - 3039
  • [17] Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing
    Hu, T. Y.
    Wang, Y.
    Liao, C. R.
    Wang, D. N.
    [J]. OPTICS LETTERS, 2012, 37 (24) : 5082 - 5084
  • [18] Optical fibre long-period grating sensors: Characteristics and application
    James, SW
    Tatam, RP
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2003, 14 (05) : R49 - R61
  • [19] Fiber grating sensors
    Kersey, AD
    Davis, MA
    Patrick, HJ
    LeBlanc, M
    Koo, KP
    Askins, CG
    Putnam, MA
    Friebele, EJ
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (08) : 1442 - 1463
  • [20] Photonic crystal fibres
    Knight, JC
    [J]. NATURE, 2003, 424 (6950) : 847 - 851