Slightly Tapered Optical Fiber With Inner Air-Cavity as a Miniature and Versatile Sensing Device

被引:14
作者
Chen, H. F. [1 ,2 ,3 ,4 ]
Wang, D. N. [1 ,2 ,3 ,5 ]
Hong, W. [6 ]
机构
[1] China Jiliang Univ, Coll Opt & Elect Technol, Hangzhou 310018, Zhejiang, Peoples R China
[2] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[3] Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[4] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[5] Hubei Polytech Univ, Sch Elect Elect & Informat Engn, Huangshi, Peoples R China
[6] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Air-cavity; fiber sensor; refractive index sensing; strain sensing; temperature sensing; SUBWAVELENGTH-DIAMETER SILICA; GRATING TECHNOLOGY; REFRACTIVE-INDEX; BRAGG GRATINGS; TEMPERATURE; INTERFEROMETERS; SENSITIVITY; SENSORS; STRAIN;
D O I
10.1109/JLT.2014.2372057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A long-standing goal of optical fiber sensors is the development of a miniature and versatile optical fiber device, which is capable of performing multiple sensing functions, and supporting a simple and efficient system. Here, we demonstrate an elegant way of achieving such a device by use of an inner air-cavity in a slightly tapered optical fiber. Owing to the small size of only a few tens microns and inner cavity structure, a spatially precise "point sensing" with high sensitivity and good robustness can be readily achieved. The refractive index, strain, and temperature sensitivities obtained are similar to 1060 nm/RIU (refractive index unit), 22.5 pm/mu epsilon, and 80 pm/degrees C, respectively. The inner air-cavity-based device is flexible, ultracompact, versatile, and highly efficient, which provides a promising new way for a wide range of optical fiber sensing applications.
引用
收藏
页码:62 / 68
页数:7
相关论文
共 40 条
[11]   Optical sensing with photonic crystal fibers [J].
Frazao, Orlando ;
Santos, Jose L. ;
Araujo, Francisco M. ;
Ferreira, Luis A. .
LASER & PHOTONICS REVIEWS, 2008, 2 (06) :449-459
[12]   Supported microfiber loops for optical sensing [J].
Guo, Xin ;
Tong, Limin .
OPTICS EXPRESS, 2008, 16 (19) :14429-14434
[13]   PHOTOSENSITIVITY IN OPTICAL FIBER WAVEGUIDES - APPLICATION TO REFLECTION FILTER FABRICATION [J].
HILL, KO ;
FUJII, Y ;
JOHNSON, DC ;
KAWASAKI, BS .
APPLIED PHYSICS LETTERS, 1978, 32 (10) :647-649
[14]   Fiber Bragg grating technology fundamentals and overview [J].
Hill, KO ;
Meltz, G .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (08) :1263-1276
[15]   Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer [J].
Hu, L. M. ;
Chan, C. C. ;
Dong, X. Y. ;
Wang, Y. P. ;
Zu, P. ;
Wong, W. C. ;
Qian, W. W. ;
Li, T. .
IEEE PHOTONICS JOURNAL, 2012, 4 (01) :114-118
[16]   Optical fiber in-line Mach-Zehnder interferometer based on dual internal mirrors formed by a hollow sphere pair [J].
Hu, T. Y. ;
Wang, D. N. .
OPTICS LETTERS, 2013, 38 (16) :3036-3039
[17]   Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing [J].
Hu, T. Y. ;
Wang, Y. ;
Liao, C. R. ;
Wang, D. N. .
OPTICS LETTERS, 2012, 37 (24) :5082-5084
[18]   Optical fibre long-period grating sensors: Characteristics and application [J].
James, SW ;
Tatam, RP .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2003, 14 (05) :R49-R61
[19]   Fiber grating sensors [J].
Kersey, AD ;
Davis, MA ;
Patrick, HJ ;
LeBlanc, M ;
Koo, KP ;
Askins, CG ;
Putnam, MA ;
Friebele, EJ .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (08) :1442-1463
[20]   Photonic crystal fibres [J].
Knight, JC .
NATURE, 2003, 424 (6950) :847-851