Slightly Tapered Optical Fiber With Inner Air-Cavity as a Miniature and Versatile Sensing Device

被引:14
作者
Chen, H. F. [1 ,2 ,3 ,4 ]
Wang, D. N. [1 ,2 ,3 ,5 ]
Hong, W. [6 ]
机构
[1] China Jiliang Univ, Coll Opt & Elect Technol, Hangzhou 310018, Zhejiang, Peoples R China
[2] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[3] Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[4] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[5] Hubei Polytech Univ, Sch Elect Elect & Informat Engn, Huangshi, Peoples R China
[6] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Air-cavity; fiber sensor; refractive index sensing; strain sensing; temperature sensing; SUBWAVELENGTH-DIAMETER SILICA; GRATING TECHNOLOGY; REFRACTIVE-INDEX; BRAGG GRATINGS; TEMPERATURE; INTERFEROMETERS; SENSITIVITY; SENSORS; STRAIN;
D O I
10.1109/JLT.2014.2372057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A long-standing goal of optical fiber sensors is the development of a miniature and versatile optical fiber device, which is capable of performing multiple sensing functions, and supporting a simple and efficient system. Here, we demonstrate an elegant way of achieving such a device by use of an inner air-cavity in a slightly tapered optical fiber. Owing to the small size of only a few tens microns and inner cavity structure, a spatially precise "point sensing" with high sensitivity and good robustness can be readily achieved. The refractive index, strain, and temperature sensitivities obtained are similar to 1060 nm/RIU (refractive index unit), 22.5 pm/mu epsilon, and 80 pm/degrees C, respectively. The inner air-cavity-based device is flexible, ultracompact, versatile, and highly efficient, which provides a promising new way for a wide range of optical fiber sensing applications.
引用
收藏
页码:62 / 68
页数:7
相关论文
共 40 条
[1]   Optical fiber long-period grating sensors [J].
Bhatia, V ;
Vengsarkar, AM .
OPTICS LETTERS, 1996, 21 (09) :692-694
[2]   Endlessly single-mode photonic crystal fiber [J].
Birks, TA ;
Knight, JC ;
Russell, PS .
OPTICS LETTERS, 1997, 22 (13) :961-963
[3]   Ultra-low-loss optical fiber nanotapers [J].
Brambilla, G ;
Finazzi, V ;
Richardson, DJ .
OPTICS EXPRESS, 2004, 12 (10) :2258-2263
[4]   Fibre gratings and devices for sensors and lasers [J].
Canning, John .
LASER & PHOTONICS REVIEWS, 2008, 2 (04) :275-289
[5]   Recent progress and novel applications of photonic crystal fibers [J].
Cerqueira, Arismar S., Jr. .
REPORTS ON PROGRESS IN PHYSICS, 2010, 73 (02)
[6]   Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index [J].
Chen, Chengkun ;
Laronche, Albane ;
Bouwmans, Geraud ;
Bigot, Laurent ;
Quiquempois, Yves ;
Albert, Jacques .
OPTICS EXPRESS, 2008, 16 (13) :9645-9653
[7]   Compact optical short-pass filters based on microfibers [J].
Chen, Yuan ;
Ma, Zhe ;
Yang, Qing ;
Tong, Li-Min .
OPTICS LETTERS, 2008, 33 (21) :2565-2567
[8]   Single-mode photonic band gap guidance of light in air [J].
Cregan, RF ;
Mangan, BJ ;
Knight, JC ;
Birks, TA ;
Russell, PS ;
Roberts, PJ ;
Allan, DC .
SCIENCE, 1999, 285 (5433) :1537-1539
[9]   Grating resonances in air-silica microstructured optical fibers [J].
Eggleton, BJ ;
Westbrook, PS ;
Windeler, RS ;
Spälter, S ;
Strasser, TA .
OPTICS LETTERS, 1999, 24 (21) :1460-1462
[10]   Applications of fiber optic grating technology to multi-parameter measurement [J].
Frazao, O ;
Ferreira, LA ;
Araújo, FM ;
Santos, JL .
FIBER AND INTEGRATED OPTICS, 2005, 24 (3-4) :227-244