Slightly Tapered Optical Fiber With Inner Air-Cavity as a Miniature and Versatile Sensing Device

被引:14
作者
Chen, H. F. [1 ,2 ,3 ,4 ]
Wang, D. N. [1 ,2 ,3 ,5 ]
Hong, W. [6 ]
机构
[1] China Jiliang Univ, Coll Opt & Elect Technol, Hangzhou 310018, Zhejiang, Peoples R China
[2] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[3] Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[4] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[5] Hubei Polytech Univ, Sch Elect Elect & Informat Engn, Huangshi, Peoples R China
[6] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Air-cavity; fiber sensor; refractive index sensing; strain sensing; temperature sensing; SUBWAVELENGTH-DIAMETER SILICA; GRATING TECHNOLOGY; REFRACTIVE-INDEX; BRAGG GRATINGS; TEMPERATURE; INTERFEROMETERS; SENSITIVITY; SENSORS; STRAIN;
D O I
10.1109/JLT.2014.2372057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A long-standing goal of optical fiber sensors is the development of a miniature and versatile optical fiber device, which is capable of performing multiple sensing functions, and supporting a simple and efficient system. Here, we demonstrate an elegant way of achieving such a device by use of an inner air-cavity in a slightly tapered optical fiber. Owing to the small size of only a few tens microns and inner cavity structure, a spatially precise "point sensing" with high sensitivity and good robustness can be readily achieved. The refractive index, strain, and temperature sensitivities obtained are similar to 1060 nm/RIU (refractive index unit), 22.5 pm/mu epsilon, and 80 pm/degrees C, respectively. The inner air-cavity-based device is flexible, ultracompact, versatile, and highly efficient, which provides a promising new way for a wide range of optical fiber sensing applications.
引用
收藏
页码:62 / 68
页数:7
相关论文
共 40 条
  • [1] Optical fiber long-period grating sensors
    Bhatia, V
    Vengsarkar, AM
    [J]. OPTICS LETTERS, 1996, 21 (09) : 692 - 694
  • [2] Endlessly single-mode photonic crystal fiber
    Birks, TA
    Knight, JC
    Russell, PS
    [J]. OPTICS LETTERS, 1997, 22 (13) : 961 - 963
  • [3] Ultra-low-loss optical fiber nanotapers
    Brambilla, G
    Finazzi, V
    Richardson, DJ
    [J]. OPTICS EXPRESS, 2004, 12 (10): : 2258 - 2263
  • [4] Fibre gratings and devices for sensors and lasers
    Canning, John
    [J]. LASER & PHOTONICS REVIEWS, 2008, 2 (04) : 275 - 289
  • [5] Recent progress and novel applications of photonic crystal fibers
    Cerqueira, Arismar S., Jr.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2010, 73 (02)
  • [6] Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index
    Chen, Chengkun
    Laronche, Albane
    Bouwmans, Geraud
    Bigot, Laurent
    Quiquempois, Yves
    Albert, Jacques
    [J]. OPTICS EXPRESS, 2008, 16 (13): : 9645 - 9653
  • [7] Compact optical short-pass filters based on microfibers
    Chen, Yuan
    Ma, Zhe
    Yang, Qing
    Tong, Li-Min
    [J]. OPTICS LETTERS, 2008, 33 (21) : 2565 - 2567
  • [8] Single-mode photonic band gap guidance of light in air
    Cregan, RF
    Mangan, BJ
    Knight, JC
    Birks, TA
    Russell, PS
    Roberts, PJ
    Allan, DC
    [J]. SCIENCE, 1999, 285 (5433) : 1537 - 1539
  • [9] Grating resonances in air-silica microstructured optical fibers
    Eggleton, BJ
    Westbrook, PS
    Windeler, RS
    Spälter, S
    Strasser, TA
    [J]. OPTICS LETTERS, 1999, 24 (21) : 1460 - 1462
  • [10] Applications of fiber optic grating technology to multi-parameter measurement
    Frazao, O
    Ferreira, LA
    Araújo, FM
    Santos, JL
    [J]. FIBER AND INTEGRATED OPTICS, 2005, 24 (3-4) : 227 - 244