Morphogenic effects of abiotic stress:: reorientation of growth in Arabidopsis thaliana seedlings

被引:126
|
作者
Pasternak, T
Rudas, V
Potters, G
Jansen, MAK
机构
[1] Univ Antwerp, Dept Biol, Lab Plant Physiol, B-2020 Antwerp, Belgium
[2] Natl Acad Sci Ukraine, Inst Cell Biol & Genet Engn, UA-03650 Kiev, Ukraine
[3] Natl Univ Ireland Univ Coll Cork, Dept Plant Sci, ZEPS, Cork, Ireland
关键词
abiotic stress; plant morphogenesis; auxin; Arabidopsis thaliana; reactive oxygen species;
D O I
10.1016/j.envexpbot.2004.04.009
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Abiotic stress responses include changes in physiological and biochemical processes as well as morphological and developmental patterns. It has remained an enigma which mechanisms are responsible for stress-induced morphogenesis. In this paper we demonstrate that stress induced phenotypes comprise a re-orientation rather than a cessation of growth. Moreover, strong similarities between the phenotypes induced by excess copper, paraquat, salicylic acid and a hydrogen peroxide analogue, indicate that a common molecular-physiological response system mediates these morphogenic stress responses. It is proposed that reactive oxygen species play a key role in controlling the architectural changes in stressed Arabidopsis thaliana seedlings. We found that phenotypes of plants exposed to stress resemble, in terms of the redistribution of growth, plants altered in phytobormone metabolism. We also found that plants in which polar auxin transport is blocked with TIBA, strongly resemble, but are not identical to, plants exposed to abiotic stress. Based on the stress induced formation of lateral roots, we surmise that stress induces local auxin accumulation near the root pericycle. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:299 / 314
页数:16
相关论文
共 50 条
  • [1] Roles of cytokinins in root growth and abiotic stress response of Arabidopsis thaliana
    Wu, Yu
    Liu, Huimin
    Wang, Qing
    Zhang, Genfa
    PLANT GROWTH REGULATION, 2021, 94 (02) : 151 - 160
  • [2] Roles of cytokinins in root growth and abiotic stress response of Arabidopsis thaliana
    Yu Wu
    Huimin Liu
    Qing Wang
    Genfa Zhang
    Plant Growth Regulation, 2021, 94 : 151 - 160
  • [3] Effects of dichromate on growth and root system architecture of Arabidopsis thaliana seedlings
    Castro, Randy Ortiz
    Trujillo, Miguel Martinez
    Bucio, Jose Lopez
    Cervantes, Carlos
    Dubrovsky, Joseph
    PLANT SCIENCE, 2007, 172 (04) : 684 - 691
  • [4] Ureide metabolism under abiotic stress in Arabidopsis thaliana
    Irani, Solmaz
    Todd, Christopher D.
    JOURNAL OF PLANT PHYSIOLOGY, 2016, 199 : 87 - 95
  • [5] Multidimensional patterns of metabolic response in abiotic stress-induced growth of Arabidopsis thaliana
    Yadav, Brijesh S.
    Lahav, Tamar
    Reuveni, Eli
    Chamovitz, Daniel A.
    Freilich, Shiri
    PLANT MOLECULAR BIOLOGY, 2016, 92 (06) : 689 - 699
  • [6] Multidimensional patterns of metabolic response in abiotic stress-induced growth of Arabidopsis thaliana
    Brijesh S. Yadav
    Tamar Lahav
    Eli Reuveni
    Daniel A. Chamovitz
    Shiri Freilich
    Plant Molecular Biology, 2016, 92 : 689 - 699
  • [7] Effect of temperature on growth and phototropism of Arabidopsis thaliana seedlings
    Orbovic, Vladimir
    Poff, Kenneth L.
    JOURNAL OF PLANT GROWTH REGULATION, 2007, 26 (03) : 222 - 228
  • [8] Effect of Temperature on Growth and Phototropism of Arabidopsis thaliana Seedlings
    Vladimir Orbović
    Kenneth L. Poff
    Journal of Plant Growth Regulation, 2007, 26 : 222 - 228
  • [9] Response of mannitol-producing Arabidopsis thaliana to abiotic stress
    Sickler, Christine M.
    Edwards, Gerald E.
    Kiirats, Olavi
    Gao, Zhifang
    Loescher, Wayne
    FUNCTIONAL PLANT BIOLOGY, 2007, 34 (04) : 382 - 391
  • [10] Profiling the Abiotic Stress Responsive microRNA Landscape of Arabidopsis thaliana
    Pegler, Joseph L.
    Oultram, Jackson M. J.
    Grof, Christopher P. L.
    Eamens, Andrew L.
    PLANTS-BASEL, 2019, 8 (03):