Unsupervised hyperspectral stimulated Raman microscopy image enhancement: denoising and segmentation via one-shot deep learning

被引:14
作者
Abdolghader, Pedram [1 ,2 ]
Ridsdale, Andrew [2 ]
Grammatikopoulos, Tassos [3 ]
Resch, Gavin [1 ]
Legare, Francois [4 ]
Stolow, Albert [1 ,2 ,5 ,6 ,7 ]
Pegoraro, Adrian F. [1 ,2 ]
Tamblyn, Isaac [1 ,8 ]
机构
[1] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
[2] Natl Res Council Canada, Secur & Disrupt Thchnol, Ottawa, ON K1A 0R6, Canada
[3] SGS Canada Inc, Lakefield, ON, Canada
[4] Ctr EMT, Inst Natl Rech Sci, Varennes, PQ J3X1S2, Canada
[5] NRC uOttawa Joint Ctr Extreme Photon, Ottawa, ON K1N 6N5, Canada
[6] Max Planck uOttawa Ctr Extreme & Quantum Photon, Ottawa, ON K1N 6N5, Canada
[7] Univ Ottawa, Dept Chem, Ottawa, ON K1N 6N5, Canada
[8] Vector Inst Aruficial Intelligence, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SCATTERING MICROSCOPY; SUPERRESOLUTION; LASER;
D O I
10.1364/OE.439662
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hyperspectral stimulated Raman scattering (SRS) microscopy is a label-free technique for biomedical and mineralogical imaging which can suffer from low signal-to-noise ratios. Here we demonstrate the use of an unsupervised deep learning neural network for rapid and automatic denoising of SRS images: UHRED (Unsupervised Hyperspectral Resolution Enhancement and Denoising). UHRED is capable of "one-shot" learning; only one hyperspectral image is needed, with no requirements for training on previously labelled datasets or images. Furthermore, by applying a k-means clustering algorithm to the processed data, we demonstrate automatic, unsupervised image segmentation, yielding, without prior knowledge of the sample, intuitive chemical species maps, as shown here for a lithium ore sample. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:34205 / 34219
页数:15
相关论文
共 49 条
  • [1] Abdolghader Pedram, 2020, 2020 Photonics North (PN), DOI 10.1109/PN50013.2020.9166931
  • [2] Abdolghader P., 2021, UNSUPERVISED SUPERVI
  • [3] Abdolghader P., UNSUPERVISED HYPERSP, V2021
  • [4] All normal dispersion nonlinear fibre supercontinuum source characterization and application in hyperspectral stimulated Raman scattering microscopy
    Abdolghader, Pedram
    Pegoraro, Adrian F.
    Joly, Nicolas Y.
    Ridsdale, Andrew
    Lausten, Rune
    Legare, Francois
    Stolow, Albert
    [J]. OPTICS EXPRESS, 2020, 28 (24) : 35997 - 36008
  • [5] A machine learning framework to analyze hyperspectral stimulated Raman scattering microscopy images of expressed human meibum
    Alfonso-Garcia, Alba
    Paugh, Jerry
    Farid, Marjan
    Garg, Sumit
    Jester, James
    Potma, Eric
    [J]. JOURNAL OF RAMAN SPECTROSCOPY, 2017, 48 (06) : 803 - 812
  • [6] D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage
    Alfonso-Garcia, Alba
    Pfisterer, Simon G.
    Riezman, Howard
    Ikonen, Elina
    Potma, Eric O.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (06)
  • [7] Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse
    Andresen, Esben Ravn
    Berto, Pascal
    Rigneault, Herve
    [J]. OPTICS LETTERS, 2011, 36 (13) : 2387 - 2389
  • [8] [Anonymous], 2015, AM J BOT, V102, P1
  • [9] [Anonymous], ARXIV150504597
  • [10] Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications
    Beier, Hope T.
    Noojin, Gary D.
    Rockwell, Benjamin A.
    [J]. OPTICS EXPRESS, 2011, 19 (20): : 18885 - 18892