Unsupervised hyperspectral stimulated Raman microscopy image enhancement: denoising and segmentation via one-shot deep learning

被引:17
作者
Abdolghader, Pedram [1 ,2 ]
Ridsdale, Andrew [2 ]
Grammatikopoulos, Tassos [3 ]
Resch, Gavin [1 ]
Legare, Francois [4 ]
Stolow, Albert [1 ,2 ,5 ,6 ,7 ]
Pegoraro, Adrian F. [1 ,2 ]
Tamblyn, Isaac [1 ,8 ]
机构
[1] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
[2] Natl Res Council Canada, Secur & Disrupt Thchnol, Ottawa, ON K1A 0R6, Canada
[3] SGS Canada Inc, Lakefield, ON, Canada
[4] Ctr EMT, Inst Natl Rech Sci, Varennes, PQ J3X1S2, Canada
[5] NRC uOttawa Joint Ctr Extreme Photon, Ottawa, ON K1N 6N5, Canada
[6] Max Planck uOttawa Ctr Extreme & Quantum Photon, Ottawa, ON K1N 6N5, Canada
[7] Univ Ottawa, Dept Chem, Ottawa, ON K1N 6N5, Canada
[8] Vector Inst Aruficial Intelligence, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SCATTERING MICROSCOPY; SUPERRESOLUTION; LASER;
D O I
10.1364/OE.439662
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hyperspectral stimulated Raman scattering (SRS) microscopy is a label-free technique for biomedical and mineralogical imaging which can suffer from low signal-to-noise ratios. Here we demonstrate the use of an unsupervised deep learning neural network for rapid and automatic denoising of SRS images: UHRED (Unsupervised Hyperspectral Resolution Enhancement and Denoising). UHRED is capable of "one-shot" learning; only one hyperspectral image is needed, with no requirements for training on previously labelled datasets or images. Furthermore, by applying a k-means clustering algorithm to the processed data, we demonstrate automatic, unsupervised image segmentation, yielding, without prior knowledge of the sample, intuitive chemical species maps, as shown here for a lithium ore sample. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:34205 / 34219
页数:15
相关论文
共 49 条
[1]  
Abdolghader Pedram, 2020, 2020 Photonics North (PN), DOI 10.1109/PN50013.2020.9166931
[2]  
Abdolghader P., 2021, UNSUPERVISED SUPERVI
[3]  
Abdolghader P., UNSUPERVISED HYPERSP, V2021
[4]   All normal dispersion nonlinear fibre supercontinuum source characterization and application in hyperspectral stimulated Raman scattering microscopy [J].
Abdolghader, Pedram ;
Pegoraro, Adrian F. ;
Joly, Nicolas Y. ;
Ridsdale, Andrew ;
Lausten, Rune ;
Legare, Francois ;
Stolow, Albert .
OPTICS EXPRESS, 2020, 28 (24) :35997-36008
[5]   A machine learning framework to analyze hyperspectral stimulated Raman scattering microscopy images of expressed human meibum [J].
Alfonso-Garcia, Alba ;
Paugh, Jerry ;
Farid, Marjan ;
Garg, Sumit ;
Jester, James ;
Potma, Eric .
JOURNAL OF RAMAN SPECTROSCOPY, 2017, 48 (06) :803-812
[6]   D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage [J].
Alfonso-Garcia, Alba ;
Pfisterer, Simon G. ;
Riezman, Howard ;
Ikonen, Elina ;
Potma, Eric O. .
JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (06)
[7]   Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse [J].
Andresen, Esben Ravn ;
Berto, Pascal ;
Rigneault, Herve .
OPTICS LETTERS, 2011, 36 (13) :2387-2389
[8]  
[Anonymous], 2015, AM J BOT, V102, P1
[9]  
[Anonymous], ARXIV150504597
[10]   Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications [J].
Beier, Hope T. ;
Noojin, Gary D. ;
Rockwell, Benjamin A. .
OPTICS EXPRESS, 2011, 19 (20) :18885-18892