Approximating Steiner trees and forests with minimum number of Steiner points

被引:5
作者
Cohen, Nachshon [1 ]
Nutov, Zeev [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[2] Open Univ Israel, Raanana, Israel
关键词
Wireless networks; Unit-disc graph; Steiner tree; Steiner forest; 2-connectivity; Approximation algorithms; CONNECTIVITY PROBLEMS; SENSOR NETWORKS; ALGORITHM;
D O I
10.1016/j.jcss.2018.08.001
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Let R be a finite set of terminals in a convex metric space (M, d). We give approximation algorithms for problems of finding a minimum size set S subset of M of additional points such that the unit-disc graph G[R boolean OR S] of R boolean OR S satisfies some connectivity properties. Let Delta be the maximum number of independent points in a unit ball. For the Steiner Tree with Minimum Number of Steiner Points problem we obtain approximation ratio 1 + In(Delta - 1) +epsilon, which in R-2 reduces to 1 + In 4 +epsilon < 2.3863 +epsilon; this improves the ratios [(Delta + 1)/2 ] + 1 +epsilon of [19] and 2.5 + epsilon of [7], respectively. For the Steiner Forest with Minimum Number of Steiner Points problem we give a simple Delta-approximation algorithm, improving the ratio 2(Delta - 1) of [21]. We also simplify the Delta-approximation of [4], when G[R boolean OR S] should be 2-connected. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 24 条
[1]   WHEN TREES COLLIDE - AN APPROXIMATION ALGORITHM FOR THE GENERALIZED STEINER PROBLEM ON NETWORKS [J].
AGRAWAL, A ;
KLEIN, P ;
RAVI, R .
SIAM JOURNAL ON COMPUTING, 1995, 24 (03) :440-456
[2]  
[Anonymous], 1996, CS9606 U VIRG
[3]   Deploying Sensor Networks With Guaranteed Fault Tolerance [J].
Bredin, Jonathan L. ;
Demaine, Erik D. ;
Hajiaghayi, Mohammad Taghi ;
Rus, Daniela .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2010, 18 (01) :216-228
[4]   Steiner Tree Approximation via Iterative Randomized Rounding [J].
Byrka, Jaroslaw ;
Grandoni, Fabrizio ;
Rothvoss, Thomas ;
Sanita, Laura .
JOURNAL OF THE ACM, 2013, 60 (01)
[5]  
Calinescu G., 2015, J COMB OPTIM
[6]  
Calinescu G, 2012, LECT NOTES COMPUT SC, V7290, P366, DOI 10.1007/978-3-642-30054-7_29
[7]   Approximations for Steiner trees with minimum number of Steiner points [J].
Chen, DH ;
Du, DZ ;
Hu, XD ;
Lin, GH ;
Wang, LS ;
Xue, GL .
THEORETICAL COMPUTER SCIENCE, 2001, 262 (1-2) :83-99
[8]   Relay sensor placement in wireless sensor networks [J].
Cheng, Xiuzhen ;
Du, Ding-Zhu ;
Wang, Lusheng ;
Xu, Baogang .
WIRELESS NETWORKS, 2008, 14 (03) :347-355
[9]   A (1+ln 2)-approximation algorithm for minimum-cost 2-edge-connectivity augmentation of trees with constant radius [J].
Cohen, Nachshon ;
Nutov, Zeev .
THEORETICAL COMPUTER SCIENCE, 2013, 489 :67-74
[10]   ON BETTER HEURISTICS FOR STEINER MINIMUM TREES [J].
DU, DZ ;
ZHANG, YJ .
MATHEMATICAL PROGRAMMING, 1992, 57 (02) :193-202