Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting

被引:0
|
作者
Song, Chao [1 ,2 ]
Lin, Youfang [1 ,2 ,3 ]
Guo, Shengnan [1 ,2 ]
Wan, Huaiyu [1 ,2 ,3 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China
[2] Beijing Key Lab Traff Data Anal & Min, Beijing, Peoples R China
[3] CAAC Key Lab Intelligent Passenger Serv Civil Avi, Beijing, Peoples R China
来源
THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2020年 / 34卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial-temporal network data forecasting is of great importance in a huge amount of applications for traffic management and urban planning. However, the underlying complex spatial-temporal correlations and heterogeneities make this problem challenging. Existing methods usually use separate components to capture spatial and temporal correlations and ignore the heterogeneities in spatial-temporal data. In this paper, we propose a novel model, named Spatial-Temporal Synchronous Graph Convolutional Networks (STSGCN), for spatial-temporal network data forecasting. The model is able to effectively capture the complex localized spatial-temporal correlations through an elaborately designed spatial-temporal synchronous modeling mechanism. Meanwhile, multiple modules for different time periods are designed in the model to effectively capture the heterogeneities in localized spatial-temporal graphs. Extensive experiments are conducted on four real-world datasets, which demonstrates that our method achieves the state-of-the-art performance and consistently outperforms other baselines.
引用
收藏
页码:914 / 921
页数:8
相关论文
共 50 条
  • [1] Spatial-temporal Graph Transformer Network for Spatial-temporal Forecasting
    Dao, Minh-Son
    Zetsu, Koji
    Hoang, Duy-Tang
    Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024, 2024, : 1276 - 1281
  • [2] Spatial-temporal correlation graph convolutional networks for traffic forecasting
    Huang, Ru
    Chen, Zijian
    Zhai, Guangtao
    He, Jianhua
    Chu, Xiaoli
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (07) : 1380 - 1394
  • [3] Topological Elastic Graph Convolutional Networks for Spatial-Temporal Sequence Forecasting
    Wang, Yiwen
    Xu, Meiling
    Tang, Lixin
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [4] PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting
    Shin, Yuyol
    Yoon, Yoonjin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7633 - 7644
  • [5] Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting
    Diao, Zulong
    Wang, Xin
    Zhang, Dafang
    Liu, Yingru
    Xie, Kun
    He, Shaoyao
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 890 - 897
  • [6] Orthogonal Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Fei, Yanhong
    Hu, Ming
    Wei, Xian
    Chen, Mingsong
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 71 - 76
  • [7] Forecasting traffic flow with spatial-temporal convolutional graph attention networks
    Zhang, Xiyue
    Xu, Yong
    Shao, Yizhen
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15457 - 15479
  • [8] AdpSTGCN: Adaptive spatial-temporal graph convolutional network for traffic forecasting
    Zhang, Xudong
    Chen, Xuewen
    Tang, Haina
    Wu, Yulei
    Shen, Hanji
    Li, Jun
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [9] Correlated load forecasting in active distribution networks using Spatial-Temporal Synchronous Graph Convolutional Networks
    Yu, Qun
    Li, Zhiyi
    IET ENERGY SYSTEMS INTEGRATION, 2021, 3 (03) : 355 - 366
  • [10] Spatial-temporal hypergraph convolutional network for traffic forecasting
    Zhao, Zhenzhen
    Shen, Guojiang
    Zhou, Junjie
    Jin, Junchen
    Kong, Xiangjie
    PEERJ COMPUTER SCIENCE, 2023, 9