Hybrid synchronization of the general delayed and non-delayed complex dynamical networks via pinning control

被引:33
作者
Wu, Xiangjun [1 ,2 ]
Lu, Hongtao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
[2] Henan Univ, Inst Complex Intelligent Network Syst, Dept Comp Ctr, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex networks; Non-delayed and delayed coupling; Pinning control; The hybrid synchronization; Linear feedback control; Adaptive control; Linear matrix inequality; PROJECTIVE SYNCHRONIZATION; ADAPTIVE SYNCHRONIZATION; SYSTEMS;
D O I
10.1016/j.neucom.2012.02.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the hybrid synchronization problem of two coupled complex dynamical networks with non-delayed and delayed coupling by the pinning control strategy. Based on the LaSalle invariance principle and linear matrix inequality technique, we obtain some sufficient conditions for the hybrid synchronization by applying the simple linear feedback and adaptive controllers to a part of nodes. Under suitable conditions, two coupled networks can reach the hybrid synchronization, i.e., the outer synchronization between the drive and response networks, and the inner synchronization in each network simultaneously. Numerical simulations show the effectiveness of the proposed synchronization scheme. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:168 / 177
页数:10
相关论文
共 37 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[3]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[4]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[5]   Robust impulsive synchronization of complex delayed dynamical networks [J].
Cai, Shuiming ;
Zhou, Jin ;
Xiang, Lan ;
Liu, Zengrong .
PHYSICS LETTERS A, 2008, 372 (30) :4990-4995
[6]   Global synchronization in arrays of delayed neural networks with constant and delayed coupling [J].
Cao, JD ;
Li, P ;
Wang, WW .
PHYSICS LETTERS A, 2006, 353 (04) :318-325
[7]  
Chen G., 1998, CHAOS ORDER METHODOL
[8]   Projective synchronization with different scale factors in a driven-response complex network and its application in image encryption [J].
Chen, Jianrui ;
Jiao, Licheng ;
Wu, Jianshe ;
Wang, Xiaodong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) :3045-3058
[9]   Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems [J].
Chen, Juhn-Horng ;
Chen, Hsien-Keng ;
Lin, Yu-Kai .
CHAOS SOLITONS & FRACTALS, 2009, 39 (02) :707-716
[10]   Pinning complex networks by a single controller [J].
Chen, Tianping ;
Liu, Xiwei ;
Lu, Wenlian .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (06) :1317-1326