Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations

被引:13
作者
Assis, M. [1 ]
Boukraa, S.
Hassani, S. [2 ]
van Hoeij, M. [3 ]
Maillard, J-M [4 ]
McCoy, B. M. [1 ]
机构
[1] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[2] Ctr Rech Nucl Alger, Algiers 16000, Algeria
[3] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[4] Univ Paris, LPTMC, CNRS, UMR 7600, F-75252 Paris 05, France
基金
美国国家科学基金会;
关键词
FUCHSIAN DIFFERENTIAL-EQUATION; MODEL SUSCEPTIBILITY; HYPERGEOMETRIC-SERIES; UNIT ARGUMENT; MIRROR MAPS; TRANSFORMATIONS; THREEFOLDS; CHI((3)); CHI((4));
D O I
10.1088/1751-8113/45/7/075205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give the exact expressions of the partial susceptibilities chi((3))(d) and chi((4))(d) for the diagonal susceptibility of the Ising model in terms of modular forms and Calabi-Yau ODEs, and more specifically, F-3(2)([1/3, 2/3, 3/2], [1, 1]; z) and F-4(3)([1/2, 1/2, 1/2, 1/2], [1, 1, 1]; z) hypergeometric functions. By solving the connection problems we analytically compute the behavior at all finite singular points for chi((3))(d) and chi((3))(d). We also give new results for chi((5))(d). We see, in particular, the emergence of a remarkable order-6 operator, which is such that its symmetric square has a rational solution. These new exact results indicate that the linear differential operators occurring in the n-fold integrals of the Ising model are not only 'derived from geometry' (globally nilpotent), but actually correspond to 'special geometry' (homomorphic to their formal adjoint). This raises the question of seeing if these 'special geometry' Ising operators are 'special' ones, reducing, in fact systematically, to (selected, k-balanced, ... ) F-q+1(q) hypergeometric functions, or correspond to the more general solutions of Calabi-Yau equations.
引用
收藏
页数:32
相关论文
共 57 条
[1]  
Almkvist G., 2006, AMS IP STUD ADV MATH, P481
[2]  
Almkvist G, 2005, ARXIVMATH0507430V2
[3]  
ANDRE Y., 1994, S MATH, VXXXVII, P1
[4]  
[Anonymous], GRUNDLEHREN MATH WIS
[5]   Factorization of the Ising model form factors [J].
Assis, M. ;
Maillard, J-M ;
McCoy, B. M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (30)
[6]  
Bailey WN, 1929, P LOND MATH SOC, V29, P495
[7]  
Bailey WN, 1929, P LOND MATH SOC, V28, P242
[8]   ZERO-FIELD SUSCEPTIBILITY OF 2-DIMENSIONAL ISING-MODEL NEAR TC [J].
BAROUCH, E ;
MCCOY, BM ;
WU, TT .
PHYSICAL REVIEW LETTERS, 1973, 31 (23) :1409-1411
[9]   Renormalization, Isogenies, and Rational Symmetries of Differential Equations [J].
Bostan, A. ;
Boukraa, S. ;
Hassani, S. ;
Maillard, J. -M. ;
Weil, J. -A. ;
Zenine, N. ;
Abarenkova, N. .
ADVANCES IN MATHEMATICAL PHYSICS, 2010, 2010
[10]   The Ising model: from elliptic curves to modular forms and Calabi-Yau equations [J].
Bostan, A. ;
Boukraa, S. ;
Hassani, S. ;
van Hoeij, M. ;
Maillard, J-M ;
Weil, J-A ;
Zenine, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (04)