The Laplacian spectral radii of trees with degree sequences

被引:84
作者
Zhang, Xiao-Dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Laplacian spectral radius; tree; degree sequence; majorization;
D O I
10.1016/j.disc.2007.06.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize all extremal trees with the largest Laplacian spectral radius in the set of all trees with a given degree sequence. Consequently, we also obtain all extremal trees with the largest Laplacian spectral radius in the sets of all trees of order n with the largest degree, the leaves number and the matching number, respectively. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3143 / 3150
页数:8
相关论文
共 12 条
[1]  
Anderson W. N., 1985, Linear Multilinear Algebra, V18, P141, DOI [10.1080/03081088508817681, DOI 10.1080/03081088508817681]
[2]  
[Anonymous], LINEAR ALGEBRA APPL
[3]  
Erdos P., 1961, Mat. Lapok, V11, P264
[4]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238
[5]   THE LAPLACIAN SPECTRUM OF A GRAPH .2. [J].
GRONE, R ;
MERRIS, R .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) :221-229
[6]   On the Laplacian spectral radius of a tree [J].
Guo, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 368 :379-385
[7]  
Li JS, 1997, LINEAR ALGEBRA APPL, V265, P93
[8]   Improved bounds for the largest eigenvalue of trees [J].
Rojo, O .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 404 :297-304
[9]   A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph [J].
Shu, JL ;
Hong, Y ;
Wen-Ren, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 347 (1-3) :123-129
[10]   Bounding the largest eigenvalue of trees in terms of the largest vertex degree [J].
Stevanovic, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 360 :35-42