Extremal and maximal normal abelian subgroups of a maximal unipotent subgroup in groups of Lie type

被引:13
作者
Levchuk, Vladimir M. [1 ]
Suleimanova, Galina S. [1 ]
机构
[1] Siberian Fed Univ, Inst Math, Krasnoyarsk 660041, Russia
基金
俄罗斯基础研究基金会;
关键词
Group of Lie type; Unipotent subgroup; Maximal abelian normal subgroup; Extremal subgroup; Large abelian subgroup;
D O I
10.1016/j.jalgebra.2011.10.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe all maximal abelian normal subgroups in the unipotent radical U of a Borel subgroup in a group of Lie type G over a field K. This gives a new description of the extremal subgroups in U which were studied by C. Parker and P. Rowley. For a finite field K, we prove that either each large abelian subgroup in U is G-conjugate to a normal subgroup in U or G is of certain exceptional Lie type. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:98 / 116
页数:19
相关论文
共 30 条
[1]  
[Anonymous], 1972, SIMPLE GROUPS LIE TY
[2]  
Barry M. J. J., 1979, Journal of the Australian Mathematical Society, Series A (Pure Mathematics), V27, P59
[3]  
BARRY MJJ, 1982, J AUST MATH SOC A, V33, P345, DOI 10.1017/S1446788700018760
[4]  
BOURBAKI N, 1968, GROUPES ALGEBRES LIE, pCH4
[5]  
GIBBS JA, 1970, J ALGEBRA, V14, P208
[6]  
GUPTA CK, 2008, J SIB FED U MP, V1, P380
[7]  
KONDRATIEV AS, 1986, USP MAT NAUK, V41, P65
[8]   Isomorphisms of certain locally nilpotent finitary groups and associated rings [J].
Kuzucuoglu, F ;
Levchuk, VM .
ACTA APPLICANDAE MATHEMATICAE, 2004, 82 (02) :169-181
[9]   The automorphism group of certain radical matrix rings [J].
Kuzucuoglu, F ;
Levchuk, VM .
JOURNAL OF ALGEBRA, 2001, 243 (02) :473-485
[10]  
Levchuk V., 1976, ALGEBR LOG+, V15, P348, DOI [10.1007/BF02069108, DOI 10.1007/BF02069108]