Passivity voltage based control of the boost power converter used in photovoltaic system

被引:4
作者
Baazouzi, K. [1 ]
Bensalah, A. D. [1 ]
Drid, S. [2 ]
Chrifi-Alaoui, L. [3 ]
机构
[1] Univ Batna 2, Elect Engn Dept, 53 Route Constantine, Fesdis 05078, Batna, Algeria
[2] Univ Batna 2, Elect Engn Dept, Res Lab LSPIE, 53 Route Constantine, Fesdis 05078, Batna, Algeria
[3] Univ Picardie Jules Verne, Lab Technol Innovantes LTI, IUT Aisne, 13 Ave Francois Mitterrand, F-02880 Cuffies Soissons, France
关键词
DC-DC converters; interconnection and damping assignment; passivity based control; port controlled Hamiltonian; INTERCONNECTION;
D O I
10.20998/2074-272X.2022.2.02
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Introduction. This paper presents a robust nonlinear control of the DC-DC boost converter feeding by a photovoltaic system based on the passivity control. The control law design uses the passivity approach. Novelty. The novelty consists in designing a control law for a photovoltaic system using a passivity approach based on energy shaping and associated with damping injection. Purpose. The purpose consists to develop a tool for design and optimize a control law of the photovoltaic system in order to improve its efficiency under some conditions such as the variations of the temperature, the irradiation and the parameters. Also, the control law design should be simple with a lower overshoot and a shorter settling time. Methods. This work uses the port Hamiltonian mathematical approach with minimization of the energy dissipation in boost converter of the photovoltaic system to illustrate the modification of energy and generate a specify duty cycle applied to the converter. Results. The results with MATLAB/SimPowerToolbox (R) have proven the robustness against parameter variations and effectiveness of the proposed control. Practical value. The experimental results, carried out using a dSPACE DS1104 system, are presented to show the feasibility and the robustness of the proposed control strategy against parameter variations. References 26, tables 3, figures 18.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 25 条
[1]  
Baazouzi K, 2014, I C SCI TECH AUTO CO, P7, DOI 10.1109/STA.2014.7086690
[2]  
Bacha S., 2014, ADV TXB CONTROL SIGN, DOI [10.1007/978-1-4471-5478-5, DOI 10.1007/978-1-4471-5478-5]
[3]   A brief history of automatic control [J].
Bennett, S .
IEEE CONTROL SYSTEMS MAGAZINE, 1996, 16 (03) :17-25
[4]   Voltage-Source Control of PV Inverter in a CERTS Microgrid [J].
Du, Wei ;
Jiang, Qirong ;
Erickson, Micah J. ;
Lasseter, Robert H. .
IEEE TRANSACTIONS ON POWER DELIVERY, 2014, 29 (04) :1726-1734
[5]   A Hamiltonian viewpoint in the modeling of switching power converters [J].
Escobar, G ;
van der Schaft, AJ ;
Ortega, R .
AUTOMATICA, 1999, 35 (03) :445-452
[6]   Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques [J].
Gonzalez Montoya, Daniel ;
Andres Ramos-Paja, Carlos ;
Giral, Roberto .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (01) :235-247
[7]  
Hassan MA, 2017, 2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2)
[8]  
Huang J., 2012, TELKOMNIKA INDONESIA, V10, P2267, DOI [10.11591/telkomnika.v10i8.1695, DOI 10.11591/TELKOMNIKA.V10I8.1695]
[9]  
Kassakian J., 1991, Principles of Power Electron
[10]   Passivity-based control of buck converters with constant-power loads [J].
Kwasinski, A. ;
Krein, P. T. .
2007 IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-6, 2007, :259-265