Discrete nonholonomic LL systems on Lie groups

被引:43
作者
Fedorov, YN [1 ]
Zenkov, DV
机构
[1] Univ Politecn Cataluna, Dept Matemat 1, E-08028 Barcelona, Spain
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
D O I
10.1088/0951-7715/18/5/017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies discrete nonholonomic mechanical systems whose configuration space is a Lie group G. Assuming that the discrete Lagrangian and constraints are left-invariant, the discrete Euler-Lagrange equations are reduced to the discrete Euler-Poincare-Suslov equations. The dynamics associated with the discrete Euler-Poincare-Suslov equations is shown to evolve on a subvariety of the Lie group G. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and discrete momentum conservation is discussed.
引用
收藏
页码:2211 / 2241
页数:31
相关论文
共 28 条
  • [1] Abbena E., 1997, MODERN DIFFERENTIAL, V2nd, P301
  • [2] [Anonymous], FUNK ANAL PRILOZHEN
  • [3] [Anonymous], TREATISE ANAL DYNAMI
  • [4] [Anonymous], 1985, USP MEKH
  • [5] ARNOLD VI, 1989, DYNAMICAL SYSTEM, V3
  • [6] Bloch A. M., 2003, INTERD APPL, V24
  • [7] Nonholonomic mechanical systems with symmetry
    Bloch, AM
    Krishnaprasad, PS
    Marsden, JE
    Murray, RM
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 136 (01) : 21 - 99
  • [8] Discrete Lagrangian reduction, discrete Euler-Poincare equations, and semidirect products
    Bobenko, AI
    Suris, YB
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1999, 49 (01) : 79 - 93
  • [9] Chaplygin SA, 1911, Mat. Sbornik, V28, P303
  • [10] Non-holonomic integrators
    Cortés, J
    Martínez, S
    [J]. NONLINEARITY, 2001, 14 (05) : 1365 - 1392