An imbedding theorem for Musielak-Sobolev spaces

被引:65
作者
Fan, Xianling [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Musielak-Orlicz function; Musielak-Sobolev space; Imbedding; Lipschitz continuity; VARIABLE EXPONENT; EMBEDDINGS;
D O I
10.1016/j.na.2011.09.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded domain in R-N and A epsilon C1-0 ((Omega) over bar x [0,+infinity)) be a Musielak-Orlicz function. We established an imbedding theorem for the Musielak-Sobolev space W-1,W-A(Omega) of the form W-1,W-A(Omega) hooked right arrow L-A* (Omega), where A(*) is the Sobolev conjugate function of A, a Musielak-Orlicz function defined in the paper. This theorem extends the imbedding theorem established by Donaldson and Trudinger for Orlicz-Sobolev spaces to the case of Musielak-Sobolev spaces. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1959 / 1971
页数:13
相关论文
共 20 条
[1]  
[Anonymous], 1971, J. Funct. Anal.
[2]  
[Anonymous], 2003, SOBOLEV SPACES
[3]  
[Anonymous], 1976, Funct. Approx. Comment. Math.
[4]  
Cianchi A, 1996, INDIANA U MATH J, V45, P39
[5]  
Clarke F.H, 1983, OPTIMIZATION NONSMOO
[7]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[8]  
Edmunds DE, 2002, MATH NACHR, V246, P53, DOI 10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO
[9]  
2-T
[10]   Sobolev embeddings with variable exponent [J].
Edmunds, DE ;
Rákosník, J .
STUDIA MATHEMATICA, 2000, 143 (03) :267-293