Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics

被引:4
|
作者
Fujiwara, Akio [1 ]
Yamagata, Koichi [2 ]
机构
[1] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Electrocommun, Grad Sch Informat & Engn, Chofu, Tokyo 1828585, Japan
关键词
contiguity; Lebesgue decomposition; likelihood ratio; local asymptotic normality; quantum statistics; LOCAL ASYMPTOTIC NORMALITY; THEOREM;
D O I
10.3150/19-BEJ1185
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We herein develop a theory of contiguity in the quantum domain based upon a novel quantum analogue of the Lebesgue decomposition. The theory thus formulated is pertinent to the weak quantum local asymptotic normality introduced in the previous paper [Yamagata, Fujiwara, and Gill, Ann. Statist. 41 (2013) 2197-2217], yielding substantial enlargement of the scope of quantum statistics.
引用
收藏
页码:2105 / 2142
页数:38
相关论文
共 50 条
  • [1] Lebesgue decomposition of probability measures: Applications to equivalence, singularity and kriging
    Mandrekar, V.
    EXPOSITIONES MATHEMATICAE, 2018, 36 (3-4) : 351 - 361
  • [2] A reproducing kernel approach to Lebesgue decomposition
    Bal, Jashan
    Martin, Robert T. W.
    Naderi, Fouad
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024,
  • [3] Lebesgue decomposition theorems
    Zoltan Sebestyén
    Zsigmond Tarcsay
    Tamas Titkos
    Acta Scientiarum Mathematicarum, 2013, 79 (1-2): : 219 - 233
  • [4] Lebesgue decomposition theorems
    Sebestyen, Zoltan
    Tarcsay, Zsigmond
    Titkos, Tamas
    ACTA SCIENTIARUM MATHEMATICARUM, 2013, 79 (1-2): : 219 - 233
  • [5] A NON-SELF-ADJOINT LEBESGUE DECOMPOSITION
    Kennedy, Matthew
    Yang, Dilian
    ANALYSIS & PDE, 2014, 7 (02): : 497 - 512
  • [6] Generalized Lebesgue decomposition of continuous functions
    Nasyrov, FS
    MATHEMATICAL NOTES, 1997, 61 (3-4) : 376 - 379
  • [7] Lebesgue-type decomposition of positive operators
    Tarcsay, Zsigmond
    POSITIVITY, 2013, 17 (03) : 803 - 817
  • [8] Lebesgue decomposition in action via semidefinite relaxations
    Jean B. Lasserre
    Advances in Computational Mathematics, 2016, 42 : 1129 - 1148
  • [9] Lebesgue-type decomposition of positive operators
    Zsigmond Tarcsay
    Positivity, 2013, 17 : 803 - 817
  • [10] Generalized Inverses of Increasing Functions and Lebesgue Decomposition
    de La Fortelle, Arnaud
    MARKOV PROCESSES AND RELATED FIELDS, 2020, 26 (04) : 637 - 658