Batch skeleton extraction from ESPI fringe patterns using pix2pix conditional generative adversarial network

被引:2
作者
Wang, Huaying [1 ,2 ]
Zhang, Zijian [1 ]
Zhu, Qiaofen [1 ,2 ]
Wang, Xue [1 ,2 ]
Dong, Zhao [1 ,2 ]
Men, Gaofu [1 ,2 ]
Wang, Jieyu [1 ]
Lei, Jialiang [1 ]
Wang, Wenjian [1 ]
机构
[1] Hebei Univ Engn, Sch Math & Phys, Handan 056000, Hebei, Peoples R China
[2] Hebei Computat Opt Imaging & Photoelect Detect Te, Handan 056000, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
ESPI; Fringe pattern; Skeleton extraction; Deep learning;
D O I
10.1007/s10043-022-00728-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The key to measurement by electronic speckle pattern interferometry (ESPI) is to obtain accurate phase information from the ESPI fringe patterns. We propose a fast batch skeleton extraction method for ESPI fringe patterns using the pix2pix conditional generative adversarial network (pix2pix cGAN). The network is trained by ESPI fringe patterns and complete skeleton images, and the trained network can quickly extract skeletons; it took 11.7 s to extract the skeletons of 200 experimental ESPI fringe patterns. Compared to the fringe skeleton method, cycle GAN method, and U-net method, our method can obtain accurate, complete, and smooth skeletons faster. In addition, for some broken ESPI fringe patterns, the traditional fringe skeleton method will fail, whereas complete skeletons can be obtained through the trained network.
引用
收藏
页码:97 / 105
页数:9
相关论文
共 32 条
[1]   Pix2pix Conditional Generative Adversarial Networks for Scheimpflug Camera Color-Coded Corneal Tomography Image Generation [J].
Abdelmotaal, Hazem ;
Abdou, Ahmed A. ;
Omar, Ahmed F. ;
El-Sebaity, Dalia Mohamed ;
Abdelazeem, Khaled .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (07)
[2]   Application of Machine Learning to Classification of Volcanic Deformation in Routinely Generated InSAR Data [J].
Anantrasirichai, N. ;
Biggs, J. ;
Albino, F. ;
Hill, P. ;
Bull, D. .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2018, 123 (08) :6592-6606
[3]   Deep4SNet: deep learning for fake speech classification [J].
Ballesteros, M. Dora ;
Rodriguez-Ortega, Yohanna ;
Renza, Diego ;
Arce, Gonzalo .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184
[4]   Learning with Type-2 Fuzzy activation functions to improve the performance of Deep Neural Networks [J].
Beke, Aykut ;
Kumbasar, Tufan .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 :372-384
[5]   High-speed ESPI and related techniques: overview and its application in the automotive industry [J].
Chen, F ;
Luo, WD ;
Dale, M ;
Petniunas, A ;
Harwood, P ;
Brown, GM .
OPTICS AND LASERS IN ENGINEERING, 2003, 40 (5-6) :459-485
[6]   Binarization of ESPI fringe patterns based on local entropy [J].
Chen, Mingming ;
Tang, Chen ;
Xu, Min ;
Lei, Zhenkun .
OPTICS EXPRESS, 2019, 27 (22) :32378-32391
[7]   Generative Adversarial Networks An overview [J].
Creswell, Antonia ;
White, Tom ;
Dumoulin, Vincent ;
Arulkumaran, Kai ;
Sengupta, Biswa ;
Bharath, Anil A. .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) :53-65
[8]   Vibration measurement based on electronic speckle pattern interferometry and radial basis function [J].
Dai, Xiangjun ;
Shao, Xinxing ;
Geng, Zhencen ;
Yang, Fujun ;
Jiang, Yijun ;
He, Xiaoyuan .
OPTICS COMMUNICATIONS, 2015, 355 :33-43
[9]   Evaluation of thermal expansion coefficient of carbon fiber reinforced composites using electronic speckle interferometry [J].
Dong, Chengzhi ;
Li, Kai ;
Jiang, Yuxi ;
Arola, Dwayne ;
Zhang, Dongsheng .
OPTICS EXPRESS, 2018, 26 (01) :531-543
[10]   Batch denoising of ESPI fringe patterns based on convolutional neural network [J].
Hao, Fugui ;
Tang, Chen ;
Xu, Min ;
Lei, Zhenkun .
APPLIED OPTICS, 2019, 58 (13) :3338-3346