Heat shock protein derivatives for delivery of antigens to antigen presenting cells

被引:81
作者
Nishikawa, Makiya [1 ]
Takemoto, Seiji [1 ]
Takakura, Yoshinobu [1 ]
机构
[1] Kyoto Univ, Grad Sch Pharmaceut Sci, Dept Biopharmaceut & Drug Metab, Sakyo Ku, Kyoto 6068501, Japan
关键词
heat shock protein; tumor antigen; antigen presenting cell; pharmacokinetics; tissue distribution; intracellular trafficking;
D O I
10.1016/j.ijpharm.2007.09.030
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Delivery of antigens to antigen presenting cells (APCs) is a key issue for developing effective cancer vaccines. Controlling the tissue distribution of antigens can increase antigen-specific immune responses, including the induction of cytotoxic T lymphocytes (CTL). Heat shock protein 70 (Hsp70) forms complexes with a variety of tumor-related antigens via its polypeptide-binding domain. Because Hsp70 is taken up by APCs through recognition by Hsp receptors, such as CD91 and LOX-1, its application to antigen delivery systems has been examined both in experimental and clinical settings. A tissue distribution study revealed that Hsp70 is mainly taken up by the liver, especially by hepatocytes, after intravenous injection in mice. A significant amount of Hsp70 was also delivered to regional lymph nodes when it was injected subcutaneously, supporting the hypothesis that Hsp70 is a natural targeting system for APCs. Model antigens were complexed with or conjugated to Hsp70, resulting in greater antigen-specific immune responses. Cytoplasmic delivery of Hsp70-antigen further increased the efficacy of the Hsp70-based vaccines. These findings indicate that effective cancer therapy can be achieved by developing Hsp70-based anticancer vaccines when their tissue and intracellular distribution is properly controlled. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 27
页数:5
相关论文
共 46 条
[1]   Autologous renal cell cancer vaccines using heat shock protein-peptide complexes [J].
Aalamian, Maryam ;
Fuchs, Ephraim ;
Gupta, Renu ;
Levey, Daniel L. .
UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2006, 24 (05) :425-433
[2]  
APPLE RJ, 1988, J IMMUNOL, V140, P3290
[3]   Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway [J].
Basu, S ;
Binder, RJ ;
Suto, R ;
Anderson, KM ;
Srivastava, PK .
INTERNATIONAL IMMUNOLOGY, 2000, 12 (11) :1539-1546
[4]   CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin [J].
Basu, S ;
Binder, RJ ;
Ramalingam, T ;
Srivastava, PK .
IMMUNITY, 2001, 14 (03) :303-313
[5]   Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes:: Clinical and immunologic findings [J].
Belli, F ;
Testori, A ;
Rivoltini, L ;
Maio, M ;
Andreola, G ;
Sertoli, MR ;
Gallino, G ;
Piris, A ;
Cattelan, A ;
Lazzari, I ;
Carrabba, M ;
Scita, G ;
Santantonio, C ;
Pilla, L ;
Tragni, G ;
Lombardo, C ;
Arienti, F ;
Marchianò, A ;
Queirolo, P ;
Bertolini, F ;
Cova, A ;
Lamaj, E ;
Ascani, L ;
Camerini, R ;
Corsi, M ;
Cascinelli, N ;
Lewis, JJ ;
Srivastava, P ;
Parmiani, G .
JOURNAL OF CLINICAL ONCOLOGY, 2002, 20 (20) :4169-4180
[6]   Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells [J].
Binder, RJ ;
Srivastava, PK .
NATURE IMMUNOLOGY, 2005, 6 (06) :593-599
[7]   The heat-shock protein receptors: some answers and more questions [J].
Binder, RJ ;
Vatner, R ;
Srivastava, P .
TISSUE ANTIGENS, 2004, 64 (04) :442-451
[8]   CD91: a receptor for heat shock protein gp96 [J].
Binder, RJ ;
Han, DK ;
Srivastava, PK .
NATURE IMMUNOLOGY, 2000, 1 (02) :151-155
[9]   Heat shock protein-based cancer vaccines and related thoughts on immunogenicity of human tumors [J].
Blachere, NE ;
Srivastava, PK .
SEMINARS IN CANCER BIOLOGY, 1995, 6 (06) :349-355
[10]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301