Fabrication of ultra-thin carbon nanofibers by centrifuged-electrospinning for application in high-rate supercapacitors

被引:57
作者
Chang, Wei-Min [1 ]
Wang, Cheng-Chien [2 ]
Chen, Chuh-Yung [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, Tainan, Taiwan
[2] Southern Taiwan Univ Sci & Technol, Dept Chem & Mat Engn, Tainan, Taiwan
关键词
Ultra-thin; Centrifuged-electrospinning; Carbon nanofiber; Supercapacitor; POROUS CARBON; ELECTROCHEMICAL PERFORMANCE; ENERGY-CONVERSION; VISCOELASTIC JET; SURFACE-AREA; ELECTRODES; LAYER; ORIENTATION; ACTIVATION; HOLLOW;
D O I
10.1016/j.electacta.2018.08.048
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The novel technique of centrifuged-electrospinning is employed to fabricate immiscible polyacrylonitrile (PAN)/polymethyl methacrylate (PMMA) polymer fibers, followed by carbonization to form ultra-thin carbon nanofibers (UT-CNF) with 28 +/- 11 nm diameters. An additional centrifugal force provides a strong stretching force to stretch the dispersed droplets (PAN) into ultra-thin nanofibers, as confirmed by electron microscopy. This structure presents good electrochemical properties compared to electrospun carbon nanofibers with 126 +/- 16 nm diameters. Electrochemical impedance spectroscopy analysis shows enhanced efficient surface areas, which accumulate ions more quickly, resulting in a decrease in the charge distribution and ion diffusion resistance because the reduction in diameter provides a short pore length and large outer surface. Applied to a supercapacitor, galvanostatic charge/discharge analysis gives a maximum specific capacitance of 243 F/g at 1 A/g and capacitance retention of 77.1% at a charge/ discharge rate of 100 A/g for UT-CNF. This result is significantly higher than that of traditional electrospun carbon nanofibers. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:268 / 275
页数:8
相关论文
共 40 条
[1]   Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends [J].
Abeykoon, Nimali C. ;
Bonso, Jeliza S. ;
Ferraris, John P. .
RSC ADVANCES, 2015, 5 (26) :19865-19873
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]  
Beguin F, 2010, ADV MAT TECH SER, P1
[4]   Carbons and Electrolytes for Advanced Supercapacitors [J].
Beguin, Francois ;
Presser, Volker ;
Balducci, Andrea ;
Frackowiak, Elzbieta .
ADVANCED MATERIALS, 2014, 26 (14) :2219-2251
[5]   Nitrogen modification of highly porous carbon for improved supercapacitor performance [J].
Candelaria, Stephanie L. ;
Garcia, Betzaida B. ;
Liu, Dawei ;
Cao, Guozhong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (19) :9884-9889
[6]   Plasma Treatment of Carbon Nanotubes Applied to Improve the High Performance of Carbon Nanofiber Supercapacitors [J].
Chang, Wei-Min ;
Wang, Cheng-Chien ;
Chen, Chuh-Yung .
ELECTROCHIMICA ACTA, 2015, 186 :530-541
[7]   The combination of electrospinning and forcespinning: Effects on a viscoelastic jet and a single nanofiber [J].
Chang, Wei-Min ;
Wang, Cheng-Chien ;
Chen, Chuh-Yung .
CHEMICAL ENGINEERING JOURNAL, 2014, 244 :540-551
[8]   Effect of pore size and surface area of carbide derived carbons on specific capacitance [J].
Chmiola, J. ;
Yushin, G. ;
Dash, R. ;
Gogotsi, Y. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :765-772
[9]   Carbon materials for supercapacitor application [J].
Frackowiak, Elzbieta .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) :1774-1785
[10]   Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes [J].
Guo, Qiaohui ;
Zhou, Xiaoping ;
Li, Xiaoyan ;
Chen, Shuiliang ;
Seema, Agarwal ;
Greiner, Andreas ;
Hou, Haoqing .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (18) :2810-2816