GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for the normal development of the epidermal surface in Arabidopsis embryos

被引:103
作者
Tsuwamoto, Ryo [1 ]
Fukuoka, Hiroyuki
Takahata, Yoshihito [1 ]
机构
[1] Iwate Univ, Fac Agr, Morioka, Iwate 0208550, Japan
关键词
embryogenesis; epidermal structure; permeability; protein kinase; mutant; Arabidopsis;
D O I
10.1111/j.1365-313X.2007.03395.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Receptor-like kinases (RLKs) containing leucine-rich repeats (LRRs) act as both signal receptor and signal transducer in ligand-mediated communication between cells. It is believed that many LRR-RLKs are present in the Arabidopsis genome, but the functions of most are unknown. We recently identified Bnms4D-82, an expressed sequence tag (EST) in Brassica napus that encodes an LRR-RLK and is expressed at an early stage of its microspore embryogenesis. To elucidate the function of this gene we used GASSHO1 (GSO1) and GSO2, two Arabidopsis genes with a high degree of homology with Bnms4D-82. The products of transcripts of GSO1 and GSO2 accumulate in parts of the embryo and in seedlings, but not in true leaves. Plants that lacked both GSO1 and GSO2 exhibited pleiotropy, including abnormal bending of embryos, ectopic adhesion between cotyledons, a highly permeable epidermal structure, and an abnormal pattern of distribution of stomata on cotyledons in embryos and seedlings. However, plants homozygous for either gso1-1 or gso2-1 had no visible abnormality. These results suggest that GASSHO genes are essential for the formation of a normal epidermal surface during embryogenesis.
引用
收藏
页码:30 / 42
页数:13
相关论文
共 59 条
[1]   Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility [J].
Aarts, MGM ;
Keijzer, CJ ;
Stiekema, WJ ;
Pereira, A .
PLANT CELL, 1995, 7 (12) :2115-2127
[2]   The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis [J].
Aharoni, A ;
Dixit, S ;
Jetter, R ;
Thoenes, E ;
van Arkel, G ;
Pereira, A .
PLANT CELL, 2004, 16 (09) :2463-2480
[3]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[4]   The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L) leaf surfaces [J].
Barnes, JD ;
Percy, KE ;
Paul, ND ;
Jones, P ;
McLaughlin, CK ;
Mullineaux, PM ;
Creissen, G ;
Wellburn, AR .
JOURNAL OF EXPERIMENTAL BOTANY, 1996, 47 (294) :99-109
[5]  
Bechtold N, 1998, METH MOL B, V82, P259
[6]   CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation [J].
Becraft, PW ;
Stinard, PS ;
McCarty, DR .
SCIENCE, 1996, 273 (5280) :1406-1409
[7]   WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis [J].
Broun, P ;
Poindexter, P ;
Osborne, E ;
Jiang, CZ ;
Riechmann, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (13) :4706-4711
[8]   EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis [J].
Canales, C ;
Bhatt, AM ;
Scott, R ;
Dickinson, H .
CURRENT BIOLOGY, 2002, 12 (20) :1718-1727
[9]   Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production [J].
Chen, XB ;
Goodwin, SM ;
Boroff, VL ;
Liu, XL ;
Jenks, MA .
PLANT CELL, 2003, 15 (05) :1170-1185
[10]   The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis [J].
Clark, SE ;
Williams, RW ;
Meyerowitz, EM .
CELL, 1997, 89 (04) :575-585