Enhanced electrochemical performance of C-NiO/NiCO2O4//AC asymmetric supercapacitor based on material design and device exploration

被引:26
作者
Li, Xiaoqin [1 ]
Liu, Yunhua [2 ]
Jin, Zhaoyu [3 ]
Li, Panpan [3 ]
Chen, Xiaojuan [2 ]
Xiao, Dan [1 ,2 ,3 ]
机构
[1] Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610065, Sichuan, Peoples R China
[2] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[3] Sichuan Univ, Dept Chem, Key Lab Green Chem & Technol, Minist Educ, Chengdu 610064, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
C-NiO/NiCO2O4; Modified nanowires; Asymmetric supercapacitors; Multi-electrode system; Energy storage; PSEUDOCAPACITIVE CONTRIBUTIONS; ULTRAHIGH CAPACITANCE; NICO2O4; NANOSHEETS; ENERGY-STORAGE; CHARGE STORAGE; TIO2; ANATASE; ELECTRODES; GROWTH; ARRAYS; NI;
D O I
10.1016/j.electacta.2018.11.011
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Asymmetric supercapacitors (ASCs) as a promising candidate to complement batteries, have been studied for decades due to the relatively high power density. The energy storage of ASCs is significantly affected by the well-designed electrode material and delicate charge balance of electrodes. With the hope to design better supercapacitor devices, we firstly synthesize C-NiO/NiCO2O4 nanocomposites with the modified nanowire structure and a small amount of carbon, effectively boosting the specific capacitance and cyclic-stability. In addition, a multi-electrode system is developed to investigate match degrees of C-NiO/NiCO2O4//AC ACSs, and the inter-restricted behavior of positive and negative electrodes. By this real-time electrochemical method, the potential contributions of electrodes in ASCs are further revealed during charge/discharge process. Therefore, ASC device with optimal match degree delivers areal capacitance up to 3482 mF cm(-2), and the maximum energy and power density of 42.69 mWh cm(-3) and 1.66 W cm(-3). Importantly, this work throws light on the fundamental study for supercapacitors in terms of materials design and charge match degrees. (C) 2018 Published by Elsevier Ltd.
引用
收藏
页码:335 / 344
页数:10
相关论文
共 64 条
[1]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[2]  
Bard A. J., 2000, WILEY CHAPTER, V14, P580
[3]   Pseudocapacitive Contributions to Charge Storage in Highly Ordered Mesoporous Group V Transition Metal Oxides with Iso-Oriented Layered Nanocrystalline Domains [J].
Brezesinski, Kirstin ;
Wang, John ;
Haetge, Jan ;
Reitz, Christian ;
Steinmueller, Sven O. ;
Tolbert, Sarah H. ;
Smarsly, Bernd M. ;
Dunn, Bruce ;
Brezesinski, Torsten .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (20) :6982-6990
[4]   Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors [J].
Brezesinski, Torsten ;
Wang, John ;
Polleux, Julien ;
Dunn, Bruce ;
Tolbert, Sarah H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1802-1809
[5]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[6]   The role and utilization of pseudocapacitance for energy storage by supercapacitors [J].
Conway, BE ;
Birss, V ;
Wojtowicz, J .
JOURNAL OF POWER SOURCES, 1997, 66 (1-2) :1-14
[7]  
Dubal D. P., 2017, ELSEVIER, V5, P99
[8]   Cation defects and conductivity in transparent oxides [J].
Exarhos, G. J. ;
Windisch, C. F., Jr. ;
Ferris, K. F. ;
Owings, R. R. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 89 (01) :9-18
[9]   Self-assembly of 3D hierarchical MnMoO4/NiWO4 microspheres for high-performance supercapacitor [J].
Feng, Xuansheng ;
Huang, Ying ;
Chen, Menghua ;
Chen, Xuefang ;
Li, Chao ;
Zhou, Suhua ;
Gao, Xiaogang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 763 :801-807
[10]   Hierarchical CoFe2O4/NiFe2O4 nanocomposites with enhanced electrochemical capacitive properties [J].
Feng, Xuansheng ;
Huang, Ying ;
Chen, Xuefang ;
Wei, Chao ;
Zhang, Xin ;
Chen, Menghua .
JOURNAL OF MATERIALS SCIENCE, 2018, 53 (04) :2648-2657