DETERMINATION OF TIME DEPENDENT FACTORS OF COEFFICIENTS IN FRACTIONAL DIFFUSION EQUATIONS

被引:50
作者
Fujishiro, Kenichi [1 ]
Kian, Yavar [2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 153, Japan
[2] Aix Marseille Univ, CNRS, CPT UMR 7332, F-13288 Marseille, France
[3] Univ Toulon & Var, CNRS, CPT UMR 7332, F-83957 La Garde, France
关键词
Inverse problems; fractional diffusion equation; time-dependent parameter; stability estimate; RANDOM-WALKS;
D O I
10.3934/mcrf.2016003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we consider initial-boundary value problems for partial differential equations with time-fractional derivatives which evolve in Q = Omega x (0, T) where Omega is a bounded domain of R-d and T > 0. We study the stability of the inverse problems of determining the time-dependent parameter in a source term or a coefficient of zero-th order term from observations of the solution at a point x(0) is an element of(Omega) over bar for all t is an element of (0, T).
引用
收藏
页码:251 / 269
页数:19
相关论文
共 38 条
[1]   FIELD-STUDY OF DISPERSION IN A HETEROGENEOUS AQUIFER .2. SPATIAL MOMENTS ANALYSIS [J].
ADAMS, EE ;
GELHAR, LW .
WATER RESOURCES RESEARCH, 1992, 28 (12) :3293-3307
[2]  
Adams R.A., 1975, Sobolev Spaces
[3]   Solution for a fractional diffusion-wave equation defined in a bounded domain [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :145-155
[4]  
[Anonymous], 1998, ESAIM P SYSTEMES DIF
[5]  
[Anonymous], 2003, J INEQUAL PURE APPL
[6]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[7]  
[Anonymous], 1989, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI DOI 10.1007/BFB0089647
[8]  
Beckers S., 2013, INT SERIES NUMERICAL, V164, P45
[9]  
Brezis H., 2011, FUNCTIONAL ANAL SOBO
[10]  
Bukhgeim A L., 1981, Soviet Mathematics Doklady, V24, P244