Double exponential transformation in the Sinc-collocation method for a boundary value problem with fourth-order ordinary differential equation

被引:31
作者
Nurmuhammad, A
Muhammad, M
Mori, M [1 ]
Sugihara, M
机构
[1] Tokyo Denki Univ, Dept Math Sci, Hatoyama, Saitama 3500394, Japan
[2] Nagoya Univ, Grad Sch Engn, Dept Computat Sci & Engn, Nagoya, Aichi 4648603, Japan
关键词
double exponential transformation; Sinc-collocation; boundary value problem;
D O I
10.1016/j.cam.2004.09.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a Sinc-collocation method for the two-point boundary value problem of fourth-order ordinary differential equation incorporated with the double exponential transformation (abbreviated as the DE transformation). By this method a convergence rate O(exp(-cN/log, N)) where N is a parameter representing the number of terms in the Sinc approximation is attained. We compared the result with ones based on the single exponential transformation which made us confirm the high efficiency of the present method. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:32 / 50
页数:19
相关论文
共 10 条
[1]  
Marshall Albert W., 1979, INEQUALITIES THEORY, V143
[2]   The double-exponential transformation in numerical analysis [J].
Mori, M ;
Sugihara, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) :287-296
[4]   Double exponential formulas for numerical indefinite integration [J].
Muhammad, M ;
Mori, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 161 (02) :431-448
[5]   THE SINC-GALERKIN METHOD FOR 4TH-ORDER DIFFERENTIAL-EQUATIONS [J].
SMITH, RC ;
BOGAR, GA ;
BOWERS, KL ;
LUND, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :760-788
[6]  
Stenger F., 1993, NUMERICAL METHODS BA
[7]  
Sugihara M, 2003, MATH COMPUT, V72, P767, DOI 10.1090/S0025-5718-02-01451-5
[8]   Double exponential transformation in the Sinc-collocation method for two-point boundary value problems [J].
Sugihara, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 149 (01) :239-250
[9]   Optimality of the double exponential formula - Functional analysis approach [J].
Sugihara, M .
NUMERISCHE MATHEMATIK, 1997, 75 (03) :379-395
[10]  
Takahasi H., 1974, Publ. RIMS, Kyoto University, V9, P721, DOI DOI 10.2977/PRIMS/1195192451