Super-additivity in communication of classical information through quantum channels from a quantum parameter estimation perspective

被引:11
作者
Czajkowski, Jan [1 ]
Jarzyna, Marcin [1 ]
Demkowicz-Dobrzanski, Rafal [1 ]
机构
[1] Univ Warsaw, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
关键词
classical communication; quantum estimation theory; Fisher information; Holevo information; CAPACITY; SUPERADDITIVITY; ENTROPY;
D O I
10.1088/1367-2630/aa7a7b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We point out a contrasting role the entanglement plays in communication and estimation scenarios. In the first case it brings noticeable benefits at the measurement stage (output super-additivity), whereas in the latter it is the entanglement of the input probes that enables significant performance enhancement (input super-additivity). We identify a weak estimation regime where a strong connection between concepts crucial to the two fields is demonstrated; the accessible information and the Holevo quantity on one side and the quantum Fisher information related quantities on the other. This allows us to shed new light on the problem of super-additivity in communication using the concepts of quantum estimation theory.
引用
收藏
页数:18
相关论文
共 70 条
[1]   Linear Universal Decoding for Compound Channels [J].
Abbe, Emmanuel ;
Zheng, Lizhong .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (12) :5999-6013
[2]  
Adesso G., 2006, THESIS
[3]  
Alicki R, 2004, J PHYS A, V7, pL55
[4]  
[Anonymous], 1995, Statistics and Econometric Models, Volumes
[5]   Continuity bounds on the quantum relative entropy [J].
Audenaert, KMR ;
Eisert, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (10)
[6]  
Banaszek K, 2012, NAT PHOTONICS, V6
[7]   Remarks on the equivalence of full additivity and monotonicity for the entanglement cost [J].
Brandao, F. G. S. L. ;
Horodecki, M. ;
Plenio, M. B. ;
Virmani, S. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2007, 14 (03) :333-339
[8]   On Hastings' Counterexamples to the Minimum Output Entropy Additivity Conjecture [J].
Brandao, Fernando G. S. L. ;
Horodecki, Michal .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2010, 17 (01) :31-52
[9]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[10]   INFORMATION-THEORETIC ASYMPTOTICS OF BAYES METHODS [J].
CLARKE, BS ;
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) :453-471