Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study

被引:68
作者
Gao, Shan [1 ]
Liao, Quanwen [1 ]
Liu, Wei [1 ]
Liu, Zhichun [1 ]
机构
[1] HUST, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
关键词
NANOSTRUCTURED SUPERHYDROPHOBIC SURFACES; DROPWISE CONDENSATION; TEXTURED SURFACES; WATER-REPELLENT; CONTACT-ANGLE; WETTABILITY; TRANSITION; CASSIE; ARRAYS;
D O I
10.1021/acs.langmuir.7b03193
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, numerous studies focused on the wetting process of droplets on various surfaces at a microscale level. However, there are a limited number of studies about the mechanism of condensation on patterned surfaces. The present study performed the dynamic wetting behavior of water droplets and condensation process of water molecules on substrates with different pillar structure parameters, through molecular dynamic simulation. The dynamic wetting results indicated that droplets exhibit Cassie state, PW state, and Wenzel state successively on textured surfaces with decreasing solid fraction. The droplets possess a higher static contact angle and a smaller spreading exponent on textured surfaces than those on smooth surfaces. The condensation processes, including the formation, growth, and coalescence of a nanodroplet, are simulated and quantitatively recorded, which are difficult to be observed by experiments. In addition, a wetting transition and a dewetting transition were observed and analyzed in condensation on textured surfaces. Combining these simulation results with previous theoretical and experimental studies will guide us to understand the hypostasis and mechanism of the condensation more clearly.
引用
收藏
页码:12379 / 12388
页数:10
相关论文
共 47 条
[1]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[2]   KINETICS OF LIQUID/LIQUID DISPLACEMENT [J].
BLAKE, TD ;
HAYNES, JM .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1969, 30 (03) :421-&
[3]   Self-cleaning surfaces - virtual realities [J].
Blossey, R .
NATURE MATERIALS, 2003, 2 (05) :301-306
[4]   Vapor chambers with jumping-drop liquid return from superhydrophobic condensers [J].
Boreyko, Jonathan B. ;
Chen, Chuan-Hua .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 61 :409-418
[5]   Planar jumping-drop thermal diodes [J].
Boreyko, Jonathan B. ;
Zhao, Yuejun ;
Chen, Chuan-Hua .
APPLIED PHYSICS LETTERS, 2011, 99 (23)
[6]   Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces [J].
Boreyko, Jonathan B. ;
Chen, Chuan-Hua .
PHYSICAL REVIEW LETTERS, 2009, 103 (18)
[7]   Microfabricated textured surfaces for super-hydrophobicity investigations [J].
Callies, M ;
Chen, Y ;
Marty, F ;
Pépin, A ;
Quéré, D .
MICROELECTRONIC ENGINEERING, 2005, 78-79 :100-105
[8]   Anti-Icing Superhydrophobic Coatings [J].
Cao, Liangliang ;
Jones, Andrew K. ;
Sikka, Vinod K. ;
Wu, Jianzhong ;
Gao, Di .
LANGMUIR, 2009, 25 (21) :12444-12448
[9]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[10]   Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes [J].
Cha, Hyeongyun ;
Chun, Jae Min ;
Sotelo, Jesus ;
Miljkovic, Nenad .
ACS NANO, 2016, 10 (09) :8223-8232