Dynamics of Geodesic Flows with Random Forcing on Lie Groups with Left-Invariant Metrics

被引:1
|
作者
Hu, W. [1 ]
Sverak, V. [2 ]
机构
[1] Missouri Univ Sci & Technol, Rolla, MO 65401 USA
[2] Univ Minnesota, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Lie groups; Left-invariant metrics; Geodesics; Stochastic perturbations; 35H20; 22-02; 34F05; NAVIER-STOKES EQUATIONS; LANGEVIN EQUATION; CONTROLLABILITY; ERGODICITY;
D O I
10.1007/s00332-018-9446-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider stochastic perturbations of geodesic flow for left-invariant metrics on finite-dimensional Lie groups and study the Hormander condition and some properties of the solutions of the corresponding Fokker-Planck equations.
引用
收藏
页码:2249 / 2274
页数:26
相关论文
共 33 条
  • [21] On the boundary behavior of left-invariant Hitchin and hypo flows
    Belgun, Florin
    Cortes, Vicente
    Freibert, Marco
    Goertsches, Oliver
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 92 : 41 - 62
  • [22] CLASSIFICATION OF LEFT INVARIANT METRICS ON 4-DIMENSIONAL SOLVABLE LIE GROUPS
    Sukilovic, Tijana
    THEORETICAL AND APPLIED MECHANICS, 2020, 47 (02) : 181 - 204
  • [23] INVARIANT RICCI SOLITONS ON THREE-DIMENSIONAL NONUNIMODULAR LIE GROUPS WITH A LEFT-INVARIANT LORENTZIAN METRIC AND A SEMISYMMETRIC CONNECTION
    Klepikov, Pavel Nikolaevich
    Rodionov, Evgeny Dmitrievich
    Khromova, Olesya Pavlovna
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (01): : 48 - 61
  • [24] Left-Invariant Riemannian Geodesics on Spatial Transformation Groups
    Zacur, Ernesto
    Bossa, Matias
    Olmos, Salvador
    SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (03): : 1503 - 1557
  • [25] Left invariant Riemannian metrics with harmonic curvature are Ricci-parallel in solvable Lie groups and Lie groups of dimension ≤ 6
    Aberaouze, Ilyes
    Boucetta, Mohamed
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 177
  • [26] MINIMAL GEODESICS ON GL(n) FOR LEFT-INVARIANT, RIGHT-O(n)-INVARIANT RIEMANNIAN METRICS
    Martin, Robert J.
    Neff, Patrizio
    JOURNAL OF GEOMETRIC MECHANICS, 2016, 8 (03) : 323 - 357
  • [27] A Topological Conjugacy of Invariant Flows on Some Class of Lie Groups
    Santana, Alexandre J.
    Stelmastchuk, Simao N.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (03): : 151 - 160
  • [28] Vacuum quantum effects on Lie groups with bi-invariant metrics
    Breev, A., I
    Shapovalov, A., V
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (08)
  • [29] Left-invariant nearly pseudo-Ka<spacing diaeresis>hler structures and the tangent Lie group
    Pham, David N.
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2024, 105 (3-4): : 515 - 522
  • [30] Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces
    Sun, Yukai
    Dai, Xianzhe
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16