Critical Factors in Computational Characterization of Hydrogen Storage in Metal-Organic Frameworks

被引:26
|
作者
Camp, Jeffrey [1 ]
Stavila, Vitalie [3 ]
Allendorf, Mark D. [3 ]
Prendergast, David [1 ]
Haranczyk, Maciej [2 ]
机构
[1] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[3] Sandia Natl Labs, Livermore, CA 94551 USA
关键词
CRYSTALLINE POROUS MATERIALS; DENSITY-FUNCTIONAL THEORY; EQUATION-OF-STATE; GAS-ADSORPTION; MOLECULAR SIMULATION; NANOPOROUS MATERIALS; CARBON NANOTUBES; TEMPERATURE; ACCURATE; SITES;
D O I
10.1021/acs.jpcc.8b04021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Inconsistencies in high-pressure H2 adsorption data and a lack of comparative experimenttheory studies have made the evaluation of both new and existing metalorganic frameworks (MOFs) challenging in the context of hydrogen storage applications. In this work, we performed grand canonical Monte Carlo (GCMC) simulations in nearly 500 experimentally refined MOF structures to examine the variance in simulation results because of the equation of state, H-2 potential, and the effect of density functional theory structural optimization. We find that hydrogen capacity at 77 K and 100 bar, as well as hydrogen 100-to-5 bar deliverable capacity, is correlated more strongly with the MOF pore volume than with the MOF surface area (the latter correlation is known as the Chahines rule). The tested methodologies provide consistent rankings of materials. In addition, four prototypical MOFs (MOF-74, CuBTC, ZIF-8, and MOF-5) with a range of surface areas, pore structures, and surface chemistries, representative of promising adsorbents for hydrogen storage, are evaluated in detail with both GCMC simulations and experimental measurements. Simulations with a three-site classical potential for H-2 agree best with our experimental data except in the case of MOF-5, in which H-2 adsorption is best replicated with a five-site potential. However, for the purpose of ranking materials, these two choices for H-2 potential make little difference. More significantly, 100 bar loading estimates based on more accurate equations of state for the vaporliquid equilibrium yield the best comparisons with the experiment.
引用
收藏
页码:18957 / 18967
页数:11
相关论文
共 50 条
  • [31] Advances in Metal-Organic Frameworks for Acetylene Storage
    Li, Ying
    Wen, Guilin
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2020, 2020 (24) : 2303 - 2311
  • [32] Metal-organic frameworks: Advances in first-principles computational studies on catalysis, adsorption, and energy storage
    Peng, Junqi
    Zhao, Yingna
    Wang, Xiaoyu
    Zeng, Xiongfeng
    Wang, Jiansheng
    Hou, Suoxia
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [33] Thermodynamics of Hydrogen Adsorption on Metal-Organic Frameworks
    Arean, Carlos O.
    Chavan, Sachin
    Cabello, Carlos P.
    Garrone, Edoardo
    Palomino, Gemma T.
    CHEMPHYSCHEM, 2010, 11 (15) : 3237 - 3242
  • [34] Role of metal-organic framework in hydrogen gas storage: A critical review
    Yuvaraj, A. R.
    Jayarama, A.
    Sharma, Deepali
    Nagarkar, Sanjog S.
    Duttagupta, Siddhartha P.
    Pinto, Richard
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 59 : 1434 - 1458
  • [35] A Simulation Study of Hydrogen in Metal-Organic Frameworks
    Bueno-Perez, Rocio
    Garcia-Perez, Elena
    Jose Gutierrez-Sevillano, Juan
    Merkling, Patrick J.
    Calero, Sofia
    ADSORPTION SCIENCE & TECHNOLOGY, 2010, 28 (8-9) : 823 - 835
  • [36] Computational Screening of Trillions of Metal-Organic Frameworks for High-Performance Methane Storage
    Lee, Sangwon
    Kim, Baekjun
    Cho, Hyun
    Lee, Hooseung
    Lee, Sarah Yunmi
    Cho, Eun Seon
    Kim, Jihan
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (20) : 23647 - 23654
  • [37] Molecular modelling and machine learning for high-throughput screening of metal-organic frameworks for hydrogen storage
    Bobbitt, N. Scott
    Snurr, Randall Q.
    MOLECULAR SIMULATION, 2019, 45 (14-15) : 1069 - 1081
  • [38] Quantum Sieving in Metal-Organic Frameworks: A Computational Study
    Liu, Dahuan
    Wang, Wenjie
    Mi, Jianguo
    Zhong, Chongli
    Yang, Qingyuan
    Wu, Dong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (01) : 434 - 442
  • [39] Computational Study of Hydrogen Chemisorption on a Multi-Phenyl Organic Linker as a Model of Hydrogen Spillover on Metal-Organic Frameworks
    Choi, Sunghwan
    Jeong, Kyeong-jun
    Park, Ji Young
    Lee, Yoon Sup
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2015, 36 (03) : 777 - 783
  • [40] Metal-Organic Frameworks Impregnated with Magnesium-Decorated Fullerenes for Methane and Hydrogen Storage
    Thornton, Aaron W.
    Nairn, Kate M.
    Hill, James M.
    Hill, Anita J.
    Hill, Matthew R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (30) : 10662 - 10669